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3 Bootstrapping Dependent Data
Suppose we have dependent data  generated from some unknown distribu-
tion .

Goal:

Challenge:

We will consider 2 approaches

y = (y1, … , yn)
F = FY = F(Y1,…,Yn)
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3.1 Model-based approach

Example 3.1 Suppose we observe a time series  which we assume is gen-
erated by an AR(1) process, i.e.,

If we assume an AR(1) model for the data, we can consider a method similar to bootstrap-
ping residuals for linear regression.

Model-based – the performance of this approach depends on the model being appropriate
for the data.

Y = (Y1, … , Yn)
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3.2 Nonparametric approach

To deal with dependence in the data, we will employ a nonparametric block bootstrap.

Idea:

3.2.1 Nonoverlapping Blocks (NBB)

Consider splitting  in  consecutive blocks of length .

We can then rewrite the data as  with , 
.

Note, the order of data within the blocks must be maintained, but the order of the blocks
that are resampled does not matter.

Y = (Y1, … , Yn) b ℓ

Y = (B1, … ,Bb) Bk = (Y(k−1)ℓ+1, … , Ykℓ)

k = 1, … , b
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3.2.2 Moving Blocks (MBB)

Now consider splitting  into overlapping blocks of adjacent data points of
length .

We can then write the blocks as , .

Y = (Y1, … , Yn)

ℓ

Bk = (Yk, … , Yk+ℓ−1) k = 1, … , n − ℓ + 1
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3.2.3 Choosing Block Size

If the block length is too short,

If the block length is too long,
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Your Turn
We will look at the annual numbers of lynx trappings for 1821–1934 in Canada. Taken
from Brockwell & Davis (1991).

Goal: Estimate the sample distribution of the mean

## [1] 1538.018

data(lynx)
plot(lynx)

theta_hat <- mean(lynx)
theta_hat
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3.2.4 Independent Bootstrap

We must account for the dependence to obtain a correct estimate of the variance!

The acf (autocorrelation) in the dominant terms is positive, so we are underestimating the
standard error.

library(simpleboot)
B <- 10000

## Your turn: perform the independent bootstap
## what is the bootstrap estimate se?

acf(lynx)
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3.2.5 Non-overlapping Block Bootstrap

3.2.6 Moving Block Bootstrap

# function to create non-overlapping blocks
nb <- function(x, b) {
  n <- length(x)
  l <- n %/% b
  
  blocks <- matrix(NA, nrow = b, ncol = l)
  for(i in 1:b) {
    blocks[i, ] <- x[((i - 1)*l + 1):(i*l)]
  }
  blocks
}

# Your turn: perform the NBB with b = 10 and l = 11
theta_hat_star_nbb <- rep(NA, B)
nb_blocks <- nb(lynx, 10)
for(i in 1:B) {
  # sample blocks
  # get theta_hat^*
}

# Plot your results to inspect the distribution
# What is the estimated standard error of theta hat? The Bias?

# function to create overlapping blocks
mb <- function(x, l) {
  n <- length(x)
  blocks <- matrix(NA, nrow = n - l + 1, ncol = l)
  for(i in 1:(n - l + 1)) {
    blocks[i, ] <- x[i:(i + l - 1)]
  }
  blocks
}

# Your turn: perform the MBB with l = 11
mb_blocks <- mb(lynx, 11)
theta_hat_star_mbb <- rep(NA, B)
for(i in 1:B) {
  # sample blocks
  # get theta_hat^*
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3.2.7 Choosing the Block size

}

# Plot your results to inspect the distribution
# What is the estimated standard error of theta hat? The Bias?

# Your turn: Perform the mbb for multiple block sizes l = 1:12
# Create a plot of the se vs the block size. What do you notice?
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4 Summary
Bootstrap methods are simulation methods for frequentist inference.

Bootstrap methods are useful for

Bootstrap methods can fail when


