
Chapter 8: Bootstrapping
Typically in statistics, we use theory to derive the sampling distribution of a statistic.
From the sampling distribution, we can obtain the variance, construct conidence intervals,
perform hypothesis tests, and more.

Challenge:

Basic idea of bootstrapping:

f-

What if the sampling distribution is impossible to obtain or asymptotic theory doesn't

hold ?

"

pull yourself up by your bootstraps
"

- Use the data to estimate the sampling distribution of the statistic .

- Estimate the sampling distribution by [creating a large number of datasets
that

we might have seen] and compute
the statistic on each of these data sets .
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1 Nonparametric Bootstrap
Let  with pdf . Recall, the cdf is de�ned as

De�nition 1.1 The empirical cdf is a function which estimates the cdf using observed data,

In practice, this leads to the following function. Let  be the order
statistics of the sample. Then,

Theoretical: 

Bootstrap: 

Example 1.1 Let  be an observed sample. Find .
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" "
depends on the data

"
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T
=

sample in order

Fn (x) is an estimator FGC) and as n9x
,
Fn → F

ecdf Cdf .

Sample ✗ ~ F use Xn .> Xn to compute Fn
.

Sample X*~Fn
,

use ✗ Y , . . ,xE to compute E.
*
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There is an easy way to sample from Fn without calculating it.
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The idea behind the bootstrap is to sample many data sets from , which can be
achieved by resampling from the data with replacement.

##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 
##  [1,]    5    2    4    4    1    2    2    1    5     1 
##  [2,]    4    5    1    1    1    2    1    1    4     2 
##  [3,]    4    2    5    1    2    2    1    4    4     3 
##  [4,]    4    5    1    3    2    4    4    4    3     1 
##  [5,]    4    1    2    1    1    1    5    2    1     1 
##  [6,]    4    2    2    2    4    4    3    2    1     2 
##  [7,]    1    5    4    4    1    2    1    2    1     4 
##  [8,]    3    1    1    1    4    1    4    1    4     2 
##  [9,]    1    4    4    2    2    1    4    3    2     1 
## [10,]    4    1    2    3    4    5    5    5    2     4

## [1] 2.5

##  [1] 3.4 2.8 2.6 2.2 2.2 2.4 3.0 2.5 2.7 2.1

# observed data
x <- c(2, 2, 1, 1, 5, 4, 4, 3, 1, 2)

# create 10 bootstrap samples
x_star <- matrix(NA, nrow = length(x), ncol = 10)
for(i in 1:10) {
  x_star[, i] <- sample(x, length(x), replace = TRUE)
}
x_star

# compare mean of the same to the means of the bootstrap samples
mean(x)

colMeans(x_star)

ggplot() + 
  geom_histogram(aes(colMeans(x_star)), binwidth = .05) +
  geom_vline(aes(xintercept = mean(x)), lty = 2, colour = "red") +
  xlab("Sampling distribution of the mean via bootstrapping")
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1.1 Algorithm

Goal: estimate the sampling distribution of a statistic based on observed data .

Let  be the parameter of interest and  be an estimator of . Then,

-

T
-

= TCX, , - .,Xn) n observations .

For b =L, . .,④←
# of bootstrap

samples.

① sample ✗
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. . ,x;c☐ ) by sampleÉ from observed data x
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. Sampling from Fn )
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"
= 1- ( sci" , . .
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.

I
estimate of a based on

bth bootstrap sample .

Using É '"
, . . . ,

0^-437

- estimate the sampling distribution of the statistic I

↳ make a histogram of ÉC
"

,
. . ,

f- an

- estimate the standard error of É

↳ compute St
.

deviation of ÉC"
,
.

,
ECB)

- estimate a CI

↳ we 'll cover multiple methods.

- estimate many other things as well
.
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1.2 Properties of Estimators

We can use the bootstrap to estimate different properties of estimators.

1.2.1 Standard Error

Recall . We can get a bootstrap estimate of the standard error:

1.2.2 Bias

Recall .

Example 1.2

We can get a bootstrap estimate of the bias:

Overall, we seek statistics with small se and small bias.

ieco-t-F-E.EE"

where É = f- £ EM
b = I

E[É]=E[ d- É( xi - Iif -

- ( 1- E) 62

⇒ bias [6^2] = [-1^62] - d = ( 1- E.) 62 - 62 = - ÷ 62

⇒ we use 5 = ¥ Écxi - IT
,
E[ 5) = 6?

I -- l

-

B

bias (E) = É - É = f- ECÉ
'"
- G)

.

b. =L

T T based

computed on original

from bootstrap data sample

samples

If bias (E) >0
,

then É overestimate Q on average .

but there typically is a bias/ variance tradeoff as bias d
,
set
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1.3 Sample Size and # Bootstrap Samples

If  is too small, or sample isn’t representative of the population,

Guidelines for  –

Best approach –

Then bootstrap results will be poor no matter how large B is
.

B I 1000 for se & bias

B I 2000 for CI 's ( depends on 2 : small ✗ ⇒ 9B)

Repeat bootstrap twice w/ different needs

If estimates are very
deferent

,
913

.
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Your Turn
In this example, we explore bootstrapping in the rare case where we know the values for
the entire population. If you have all the data from the population, you don’t need to boot-
strap (or really, inference). It is useful to learn about bootstrapping by comparing to the
truth in this example.

In the package bootstrap is contained the average LSAT and GPA for admission to the
population of  USA Law schools (an old data set – there are now over  law schools).
This package also contains a random sample of size  from this dataset.

##   LSAT  GPA 
## 1  576 3.39 
## 2  635 3.30 
## 3  558 2.81 
## 4  578 3.03 
## 5  666 3.44 
## 6  580 3.07

library(bootstrap)

head(law)

ggplot() +
  geom_point(aes(LSAT, GPA), data = law) +
  geom_point(aes(LSAT, GPA), data = law82, pch = 1)

"
random sample of

size n= 15.

← Full data set C population .
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We will estimate the correlation  between these two variables and use
a bootstrap to estimate the sample distribution of .

## [1] 0.7763745

## [1] 0.7599979

1. Plot the sample distribution of . Add vertical lines for the true value  and the sam-
ple estimate .

2. Estimate .

3. Estimate the bias of 

# sample correlation
cor(law$LSAT, law$GPA)

# population correlation
cor(law82$LSAT, law82$GPA)

# set up the bootstrap
B <- 200
n <- nrow(law)
r <- numeric(B) # storage

for(b in B) {
  ## Your Turn: Do the bootstrap!
}

Écxi - E) ( Yi -5)
Recall E-D= ¥×ÉiÉ

i

:
we know

this
because

we have
the population .
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