2 Monte Carlo Methods for Hypothesis Tests

There are two aspects of <u>hypothesis</u> tests that we will investigate through the use of Monte Carlo methods: Type I error and Power.

Example 2.1 Assume we want to test the following hypotheses

$$egin{array}{l} H_0:\mu=5\ H_a:\mu>5 \end{array}$$

with the test statistic

$$T^* = rac{\overline{x}-5}{s/\sqrt{n}}.$$

This leads to the following decision rule: Reject Ho F $T^* > t(1-\alpha), n-1 = qt(1-\alpha, n-1).$

What are we assuming about X?

$$X_{1}, \dots, X_n \xrightarrow{\text{id}} N(\mu, \delta^2)$$

2.1 Types of Errors

Type I error: Reject Ho When Ho true

Type II error: Fail to reject Ho when Ho false

truth

$$\alpha = \rho(reject H_o | H_o true) = \rho(type I error)$$

$$\beta = \rho(fail to reject | H_o false) = \rho(type I error).$$

7

Usually we set $\alpha = 0.05$ or 0.10, and choose a sample size such that power = $1-eta \ge 0.80.$ e of & 1-β Type I power. Frate

For simple cases, we can find formulas for α and β .

For all others, we can use Monte Carlo to estimate

2.2 MC Estimator of α

Assume $X_1, \ldots, X_n \sim F(\theta_0)$ (i.e., assume H_0 is true).

Then, we have the following hypothesis test –

$$egin{aligned} H_0: heta = egin{pmatrix} heta_0 & & \ H_a: heta > heta_0 \end{aligned}$$

ra number

and the statistics T^* , which is a test statistic computed from data. Then we reject H_0 if T^* > the critical value from the distribution of the test statistic. à -gt gratile This leads to the following algorithm to estimate the Type I error of the test (α) $\overset{\checkmark}{}$.

For
$$j = 1, ..., M$$
,
(1) Generale $X_{1}^{(j)}, ..., X_{n}^{(j)} \sim F(\theta_{0})$
(2) Compute $T^{*(j)} = \Upsilon(X_{1}^{(j)}, ..., X_{n}^{(j)})^{d}$ function
(3) Let $I_{0} = \begin{cases} 1 & \text{if } mject Ho based on $T^{*(j)}$.
(4) $F_{0} = \frac{1}{m} \sum_{j=1}^{m} I_{j} = \text{estimated Type I error } (\hat{P}(\text{ reject Ho} | \text{Ho true})).$
Thum $\hat{\alpha} = \frac{1}{m} \sum_{j=1}^{m} I_{j} = \text{estimated Type I error } (\hat{P}(\text{ reject Ho} | \text{Ho true})).$
and $Se(\hat{\alpha}) = \int \frac{\widehat{\alpha}(1-\hat{\alpha})}{m} = \text{estimate of } \sqrt{Var(\hat{\alpha})} = \text{estimate of } u \text{ certainly about estimate } f \hat{\alpha}$
 $\frac{1}{m} \sum_{j=1}^{m} I_{j} = \frac{1}{m} \sum_{j=1}^{m} I_{j} = \frac{1}{m^{2}} \sum_{j=1}^{m} V\alpha I_{j} = \frac{1}{m} Var I_{1}$
 $p = P(nyet H_{0} | X_{1,n}X_{n}^{*}F(\theta_{0}))$
 $= \alpha$$

Your Turn

Example 2.2 (Pearson's moment coefficient of skewness) Let $X \sim F$ where $E(X) = \mu$ and $Var(X) = \sigma^2$. Let

$$\sqrt[n]{eta_1} = E\left[\left(rac{X-\mu}{\sigma}
ight)^3
ight].$$

Then for a

- symmetric distribution, $\sqrt{\beta_1} = 0$,
- positively skewed distribution, $\sqrt{\beta_1} > 0$, and
- negatively skewed distribution, $\sqrt{\beta_1} < 0$.

The following is an estimator for skewness

$$\sqrt{b_1} = rac{\displaystyle rac{1}{n}\sum\limits_{i=1}^n (X_i - \overline{X})^3}{\displaystyle \left[\displaystyle rac{1}{n}\sum\limits_{i=1}^n (X_i - \overline{X})^2
ight]^{3/2}}.$$

It can be shown by Statistical theory that if $X_1,\ldots,X_n\sim N(\mu,\sigma^2),$ then as $n
ightarrow\infty,$

$$\frac{\sqrt{b_1}}{\sqrt{n}\sqrt{b_1}} \sim N\left(0, \frac{6}{n}\right)$$

Thus we can test the following hypothesis

Ho: symmetric distribution

$$egin{array}{ll} H_0:\sqrt{eta_1}=0 & M_a:\sqrt{eta_1}
eq 0 \end{array} \ H_a:\sqrt{eta_1}
eq 0 \end{array}$$

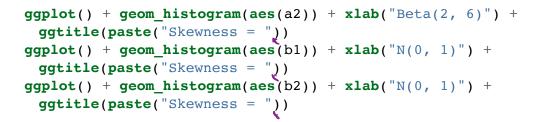
by comparing $rac{\sqrt{b_1}}{\sqrt{rac{6}{n}}}$ to a critical value from a N(0,1) distribution.

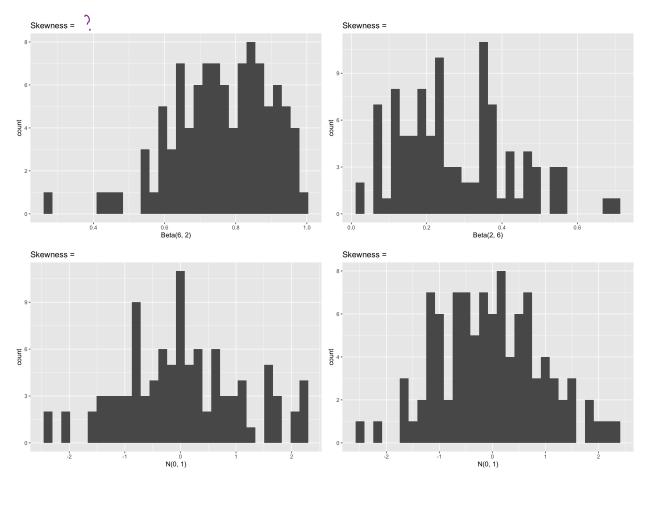
In practice, convergence of $\sqrt{b_1}$ to a $N\left(0, \frac{6}{n}\right)$ is slow.

We want to assess P(Type I error) for $\alpha = 0.05$ for n = 10, 20, 30, 50, 100, 500.

What wit ralk At compare to?

```
library(tidyverse)
 # compare a symmetric and skewed distribution
 data.frame(x = seq(0, 1, length.out = 1000)) %>%
   mutate(skewed = dbeta(x, 6, 2))
            symmetric = dbeta(x, 5, 5)) %>%
   gather(type, dsn, -x) %>%
   ggplot() +
                                                                      / Beta ( 6, 2).
   geom line(aes(x, dsn, colour = type, lty = type))
                                        4 Beta(5,5)
                                                                   V
  2 -
                                                                                type
dsn
                                                                                    skewed
                                                                                    symmetric
  1-
  0 -
                      0.25
      0.00
                                       0.50
                                                        0.75
                                                                        1.00
                                        х
                                                                     \int b_{1} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{3}
\underbrace{\int \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}_{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}
 ## write a skewness function based on a sample x
 skew <- function(x) {</pre>
    YOUR TURN
                      reuter X=X1,...,X0
 }
 ## check skewness of some samples
 n <- 100
 a1 <- rbeta(n, 6, 2)
 a2 <- rbeta(n, 2, 6)
 ## two symmetric samples
 b1 <- rnorm(100)
 b2 <- rnorm(100)
 ## fill in the skewness values
 ggplot() + geom histogram(aes(a1)) + xlab("Beta(6, 2)") +
   ggtitle(paste("Skewness = "))
                                      add shew ness the
```





Assess the P(Type I Error) for alpha = .05, n = 10, 20, 30, 50, 100, 500

Example 2.3 (Pearson's moment coefficient of skewness with variance correction) One way to improve performance of this statistic is to adjust the variance for small samples. It can be shown that

$$Var(\sqrt{b_1})=rac{6(n-2)}{(n+1)(n+3)}$$

Assess the Type I error rate of a skewness test using the finite sample correction variance.