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2 Monte Carlo Methods for Hypothesis Tests

There are two aspects of hypothesis tests that we will investigate through the use of

Monte Carlo methods: Type I error and Power.

Example 2.1 Assume we want to test the following hypotheses

with the test statistic

This leads to the following decision rule:

What are we assuming about ?

2.1 Types of Errors

Type I error:

Type II error:
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Usually we set  or , and choose a sample size such that power = 

.

For simple cases, we can �nd formulas for  and .

2.2 MC Estimator of 

Assume  (i.e., assume  is true).

Then, we have the following hypothesis test –

and the statistics , which is a test statistic computed from data. Then we reject  if 

 the critical value from the distribution of the test statistic.

This leads to the following algorithm to estimate the Type I error of the test ( )
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③ let Ij = { 1 if reject Ho based on 1-
*%)

° if fail to reject Ho based on
1-
*G).

Than Ñ=m§=,Ij = estimated Type I error ( ^P( reject Ho / Ho true))
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Your Turn
Example 2.2 (Pearson’s moment coef�cient of skewness) Let  where  and

. Let

Then for a

symmetric distribution, ,
positively skewed distribution, , and
negatively skewed distribution, .

The following is an estimator for skewness

It can be shown by Statistical theory that if , then as ,

Thus we can test the following hypothesis

by comparing  to a critical value from a  distribution.

In practice, convergence of  to a  is slow.

We want to assess  for  for .
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library(tidyverse)

# compare a symmetric and skewed distribution
data.frame(x = seq(0, 1, length.out = 1000)) %>%
  mutate(skewed = dbeta(x, 6, 2),
         symmetric = dbeta(x, 5, 5)) %>%
  gather(type, dsn, -x) %>%
  ggplot() +
  geom_line(aes(x, dsn, colour = type, lty = type))

## write a skewness function based on a sample x
skew <- function(x) {
  
}

## check skewness of some samples
n <- 100
a1 <- rbeta(n, 6, 2)
a2 <- rbeta(n, 2, 6)

## two symmetric samples
b1 <- rnorm(100)
b2 <- rnorm(100)

## fill in the skewness values
ggplot() + geom_histogram(aes(a1)) + xlab("Beta(6, 2)") + 
ggtitle(paste("Skewness = "))
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Example 2.3 (Pearson’s moment coef�cient of skewness with variance correction) One

way to improve performance of this statistic is to adjust the variance for small samples. It

can be shown that

Assess the Type I error rate of a skewness test using the �nite sample correction variance.

ggplot() + geom_histogram(aes(a2)) + xlab("Beta(2, 6)") + 
ggtitle(paste("Skewness = "))

ggplot() + geom_histogram(aes(b1)) + xlab("N(0, 1)") + 
ggtitle(paste("Skewness = "))

ggplot() + geom_histogram(aes(b2)) + xlab("N(0, 1)") + 
ggtitle(paste("Skewness = "))

## Assess the P(Type I Error) for alpha = .05, n = 10, 20, 30, 50, 
100, 500
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