
Chapter 6: Monte Carlo Integration
Monte Carlo integration is a statistical method based on random sampling in order to ap-
proximate integrals. This section could alternatively be titled,

“Integrals are hard, how can we avoid doing them?”
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1 A Tale of Two Approaches
Consider a one-dimensional integral.

The value of the integral can be derived analytically only for a few functions, . For the
rest, numerical approximations are often useful.

Why is integration important to statistics?

1.1 Numerical Integration

Idea: Approximate  via the sum of many polygons under the curve .

To do this, we could partition the interval  into  subintervals  for 
 with  and .

Within each interval, insert  nodes, so for  let  for , then

for some set of constants, .
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1.2 Monte Carlo Integration

How do we compute the mean of a distribution?

Example 1.1 Let  and .

Theory

X ∼ Unif(0, 1) Y ∼ Unif(10, 20)

x <- seq(0, 1, length.out = 1000)
f <- function(x, a, b) 1/(b - a)
ggplot() + 
  geom_line(aes(x, f(x, 0, 1))) +
  ylim(c(0, 1.5)) +
  ggtitle("Uniform(0, 1)")

y <- seq(10, 20, length.out = 1000)
ggplot() + 
  geom_line(aes(y, f(y, 10, 20))) +
  ylim(c(0, 1.5)) +
  ggtitle("Uniform(10, 20)")
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1.2.1 Notation

Distribution of 

1.2.2 Monte Carlo Simulation

What is Monte Carlo simulation?

θ

θ̂

θ̂

E[θ̂ ]

V ar(θ̂)

Ê[θ̂ ]

^V ar(θ̂)

se(θ̂)

ŝe(θ̂)
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1.2.3 Monte Carlo Integration

To approximate , we can obtain an iid random sample 
from  and then approximate  via the sample average

Example 1.2 Again, let  and . To estimate  and 
 using a Monte Carlo approach,

Now consider .

The Monte Carlo approximation of  could then be obtained by

1. 

2. 

θ = E[X] = ∫ xf(x)dx X1, … ,Xn

f θ

X ∼ Unif(0, 1) Y ∼ Unif(10, 20) E[X]
E[Y ]

E[g(X)]

θ = E[g(X)] =

∞

∫
−∞

g(x)f(x)dx.

θ
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De�nition 1.1 Monte Carlo integration is the statistical estimation of the value of an inte-
gral using evaluations of an integrand at a set of points drawn randomly from a distirbu-
tion with support over the range of integration.

Example 1.3

Why the mean?

Let , then

and, by the strong law of large numbers,

Example 1.4 Let , where , and assume  has �nite ex-
pectation under . Then

We can estimate this using a Monte Carlo approach.

E[g(X)] = θ

v(x) = (g(x) − θ)2 θ = E[g(X)] g(X)2

f

V ar(g(X)) = E[(g(X) − θ)2] = E[v(X)].
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Monte Carlo integration provides slow convergence, i.e. even though by the SLLN we
know we have convergence, it may take us a while to get there.

But, Monte Carlo integration is a very powerful tool. While numerical integration methods
are dif�cult to extend to multiple dimensions and work best with a smooth integrand,
Monte Carlo does not suffer these weaknesses.

1.2.4 Algorithm

The approach to �nding a Monte Carlo estimator for  is as follows.

1. 

2. 

3. 

4. 

Example 1.5 Estimate .

∫ g(x)f(x)dx

θ = ∫ 1

0
h(x)dx



1.2 Monte Carlo Integration 9

Example 1.6 Estimate .

Another approach:

θ = ∫ b

a
h(x)dx
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Example 1.7 Monte Carlo integration for the standard Normal cdf. Let , then
the pdf of  is

and the cdf of  is

We will look at 3 methods to estimate  for .

X ∼ N(0, 1)
X

ϕ(x) = f(x) = exp(− ), −∞ < x < ∞
1

√2π

x2

2

X

Φ(x) = F(x) =

x

∫
∞

exp(− )dt.
1

√2π

t2

2

Φ(x) x > 0
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1.2.5 Inference for MC Estimators

The Central Limit Theorem implies

So, we can construct con�dence intervals for our estimator

1. 

2. 

But we need to estimate .V ar(θ̂)
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So, if  then . How much does changing  matter?

Example 1.8 If the current  based on  samples, how many more samples do
we need to get ?

Is there a better way to decrease the variance? Yes!

m ↑ V ar(θ̂) ↓ m

se(θ̂) = 0.01 m

se(θ̂) = 0.0001


