Your Turn

We want to use the following distribution for inference, where we know the shape, but not the full distributional form. $\int_{\mathbb{R}^{2}} c \cdot \frac{\log(x)}{|x|^{2}} \mathbb{I}\left(\chi \in [1, \pi]\right),$

$$\widetilde{f}(x)=crac{\log(x)}{1+x^2},\quad x\in[1,\pi]$$

What do we need for this to be a valid pdf?

We keed
$$\int_{1}^{T} C \frac{\log(x)}{1+\chi^{2}} dx = 1.$$

$$\Rightarrow \int_{1}^{T} \frac{\log x}{1+\chi^{2}} dx = \frac{1}{C}$$
(i) estimate C using MC integration with f will of (1,177), m=10000.
a) Fill f and f (with integral at expectation of g(x), xw f).

$$\int (x) = \begin{cases} \frac{1}{T-1} & x \in [1,T] \\ 0 & x \in [1,T] \\ 0 & y = x \\ 1+\chi^{2} & dx = y \\ 1+\chi^{2} & dx = x \\ 0 & y = x \\ 1+\chi^{2} & dx = y \\ 1+\chi^{2} & \frac{1}{T-1} \\ 0 & dx = x \\ 1+\chi^{2} & \frac{1}{T-1} \\ 0 & dx = x \\ 1+\chi^{2} & \frac{1}{T-1} \\ 0 & dx = x \\ 1+\chi^{2} & \frac{1}{T-1} \\ 0 & dx = x \\ 1+\chi^{2} & \frac{1}{T-1} \\ 0 & dx = x \\ 1+\chi^{2} & \frac{1}{T-1} \\ 0 & dx = x \\ 1+\chi^{2} & \frac{1}{T-1} \\ 0 & dx = x \\ 0 & dx = x \\ 0 & dx \\ 0$$

Next to denote $e(x)$ endope! Accell $e(x) = d \cdot \tilde{g}(x)$ ist $\tilde{g} \sim Unif [J_1T]$. $\Rightarrow \tilde{g}(0) = \frac{1}{T-1}, x \in [1, !+1)$. Head $e(x) \equiv f(x)$ field to band on max value of $\tilde{f}(x)$ between $[L_1T]$. 1. Find $e(x)$ [units as a findom of $\max \tilde{f}(x)$]. 2. get $n = 1000$ scriptes from $\tilde{f}(x)$ unity accept reject. and $e(x) \geq \tilde{f}(x) \forall x$ $\Rightarrow e(x) = \max \tilde{f}(x)$ init work <i>i.e.</i> $d \cdot \frac{1}{T-1} = \max \tilde{f}(x)$ $d = (T-1) \max \tilde{f}(x)$.	(3) $\tilde{f}(x) = \frac{\log (x)}{(1 + x^2)}$ for $2e[1,T]$. $\int_{1}^{T} \frac{\log (x)}{1 + x^2} dx$. have $\tilde{\sigma}$ Need to disorse $e(x)$ envelope!			
1. Find $e(x)$ [uniter as a fundium of $\max f(x)$]. 2. get $n = 1000$ scaples from $\tilde{f}(x)$ usity accept-reject. Ned $e(x) \ge \tilde{f}(x) \forall x$ $\Rightarrow e(x) = \max \tilde{f}(x)$ with north $f(x)$, $d \cdot \frac{1}{T-1} = \max \tilde{f}(x)$ $d \Rightarrow (T-i) \max \tilde{f}(x)$.	herd elx	$(2) = a \cdot g(x)$ $\Rightarrow g(x) = \frac{1}{\pi - 1},$ $\Rightarrow f(x)$ find d band on max val	$\mathcal{X} \in [1, tt]$ We of $\mathcal{F}(\mathbf{x})$ between $[1, tt]$	
$\Rightarrow e(x) = \max \tilde{f}(x) \text{will work } i.e., d \cdot \frac{1}{T-1} = \max \tilde{f}(x), \\ d = (T-1) \max \tilde{f}(x), \\ \vdots$		$2(x)$ [united as a function of $\max f$ 1=1000 samples from $f(x)$ using ac	(a)] icept-rýcdt.	
		$e(x) = \max \tilde{f}(x)$ will work , i.e. $d \cdot \frac{1}{\overline{v}-1}$		
		dγ	(T-i) hax f(z);	
1 1				