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2 Importance Sampling
Can we do better than the simple Monte Carlo estimator of

where the variables  are randomly sampled from ?

Yes!!

Goal: estimate integrals with lower variance than the simplest Monte Carlo approach.

To accomplish this, we will use importance sampling.

2.1 The Problem

If we are sampling an event that doesn’t occur frequently, then the naive Monte Carlo esti-
mator will have high variance.

Example 2.1 Monte Carlo integration for the standard Normal cdf. Consider estimating 
 or .

We want to improve accuracy by causing rare events to occur more frequently than they
would under the naive Monte Carlo sampling framework, thereby enabling more precise
estimation.

-

-

probably .

↳ more efficient estimation .=

CHW 6)
-

www.m*iÉiE
wants out here could be rare ⇒ we may not getmany samples in te MC

-
estimator.

for very
rare events

, extremely large reduction in the variance of pe

Mc estimator are possible .
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2.2 Algorithm

Consider a density function  with support . Consider the expectation of ,

Let  be a density where  for all . Then the above statement can be
rewritten as

An estimator of  is given by the importance sampling algorithm:

1. 

2. 

For this strategy to be convenient, it must be

-

I
support of § includes the support of f

f

0 = E[gCxD= S gGc)¥¥, § Gc) dx .

*

= S
*
*

god f¥÷ God>a = E [ 84)¥¥] , to
of is called the importance sampling function

✗ must he a density ( integrate to 1 and Zo ) .
••

Sample ✗ n - -,Xm~

compute 8- = d- ¥
,

Gail
,

war

importance weights.

① easy to sample from

② easy
to evaluate f- ( even if its not easy to sample

from f)
.



16 2 Importance Sampling

Example 2.2 Suppose you have a fair six-sided die. We want to estimate the probability
that a single die roll will yield a .

✗ = result of rolling 1 fair six - sided die

want to estimate P( ✗=D
.

We could :

① Roll fair die in times

② A point estimate of P( ✗=D would be the proportion of ones in the sample .

The variance of this estimator is g÷m if the die is fair.

☒ = { 1
, .
. , 63 fcx )= { % ✗ =\

. - "
6

0 aw .

Y = {
• if ✗ = ,

0 aw.

⇒ YouBernoulli (%)

EY = +6
vary = pctp )

-

- d- (E) =§j

Estimator : Proportion of 1 's in the sample
negative

measure of
vwiabititt

( commonly
and in

chemistry

E[%i_] = d- Eloi ) = 6-
or passion .

Var [?!i_]=÷EvarGi1=%m f fan

We can consider the
" coefficient of variation

" CVCX)=¥

← estimator

so cv[ %-) =
KEI
É

- ¥÷
if we

want CV of 5% then :

--0.05

÷m = [II. on]
'

36[÷TÑ =m ⇒ m
= 2000 rolls !
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To reduce the # of rolls
,
we could consider biasing the die by replacing

the faces bearing 2 and 3 with additional 1s .

This increases probability of rolling a 1 to 1-2 but now we are not sampling

from the target dsn !
↳ fair die Now PCX -- 1) = I

P(x=2)=p(✗ =3 ) = 0

p(✗= 4) = Xx -- 5) = Pi --67 - I
can correct this by
- weighting each roll of a 1 by §

let Yi = {
"
3 if 17--1

O O - W -

Then the expectation of the sample mean ( Em⇒ :

m

E(É⇒= tm.EE " = Ey = 5.1-a + o [! + I + E) = f-

y
Ei = ÷ . It 0

-⇐ + t.tt/--Y
But the variance is

m

var ( É÷)=÷m¥vw%=÷vai=÷[÷ -1.49¥

So to achieve a CV of 5% we would only need :

F÷= . "

^

.

:

m = 400 rolls
.

This is successful because an importance sampling function (tolling a die w/ 3 ones) is

used to our sample a portion of the state space
that we cared about receives low prob under

the target dsn .
and correcting the bias .
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2.3 Choosing 

In order for the estimators to avoid excessive variability, it is important that  is
bounded and that  has heavier tails than .

Example 2.3

Example 2.4

A rare draw from  with much higher density under  than under  will receive a huge
weight and in�ate the variance of the estimate.

Strategy –

Example 2.5

① ②
FÉncights .

if this is not neat , then some importance heights will
he huge .

IYweisnoreng-yqn.ie
met that Gc) > 0 when 5-Gc) > 0 .

Then ¥%- = unbounded !

I 1

i •
"
""

AND can't draw 2=5 from ¢ !¥ñ0
If we sheet § with lighter tails than f.

f¥¥ will be large if $1s) is small .

¥¥ Thus x=s draw has large weight

and integral approximation hill be poor.

-

choose § so that 5-6010/1×7 large only when gcx) is small .

If we sheet an appropriate 0,

*

""

¥⇒ will be small ( Rare draws front

will have small weight) .

$ ff÷, muse large [ depending on

g.
could

be fire) .
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The importance sampling estimator can be shown to converge to  under the SLLN so
long as the support of  includes all of the support of .

2.4 Compare to Previous Monte Carlo Approach

Common goal –

Step 1 Do some derivations.

a. Find an appropriate  and  to rewrite your integral as an expected value. 

b. For importance sampling only,

Find an appropriate  to rewrite  as an expectation with respect to . 

Step 2 Write pseudo-code (a plan) to de�ne estimator and set-up the algorithm.

For Monte Carlo integration

1. 

2. 

For importance sampling

1. 

2. 

Step 3 Program it.

G-

T.to#s--

estimate an integral Q=ShGDdx .

-

a- -

want 0=5 htxdx = 5*81×7 fix)dx = E[g (XD
,
✗ nfcwith support H).

I 0/17420 when f-Gc) 20 required !

Wat 0=5 gcx)¥¥ 060 dx = E [gfy)¥÷] , You✗ Cwik support *¢1 .I
(a)

Sample ✗
is . .im ~ f

compute É=m§,g(Xi) .

(b) .

Sample Y, , . , You ~ §

compute 8- = b- ÉgGi)¥
in my

importance .
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2.5 Extended Example

In this example, we will estimate  using MC integration and importance
sampling with two different importance sampling distributions, .

① ②

a) and b) .

STEPI.DERIVCTHING.SI#
① Select f to be the pdf of C-xp CD so

, fix) = { % ✗ 7- °
= ÉI(xzo).

O e Un .

My •

a-Si÷ie"dx=So¥I÷÷;dx= E[÷*E(✗"D. *•eat
in

9

limits of ii. matches

support of ExpG)
✓

Importance
sampling

with

a) Normal (0/1) .

b) tp ( t dsn w/ 1 degree of freedom . ) .

② a) 0 = Eg [gcx)]
= §o¥zI(✗4) e-

"
dx

y
p is poet of

NCO, D.

= I ¥ICxepÉ¥¥ 01×7 dx .

-✗

= E[¥yI(Yet)%¥yY] , Yunnan .

b) let Y denote the pdf of t,
riv.

A
1

-0 =

Ef [gcx)] = So Ixz
#CRED e-

"

dx

= I Icx :D tlxdx

= E[¥zICzeDéEE¥] , znt .
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STEP2imAKEAPLAN@0ptibs1e.l
.SI#eXn--sXm

from Expo)

2. É=mÉ[+¥I(×i±1D .

Optim2a_:
t.ca#eY,,..,Ym from NCO , 1)

2. 8- = 'm_iÉ[¥ICYieD•é¥=÷;⇒_]

Optional:

I. Sae
Z

, ,
- . ,Zm from tp

2. É=mÉ[¥ICzi±Do¥¥{?°)_]
were tisane

pdf of a t , r. V.
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which will be the best ?

We can compare fig = hlx) . to f
,
0 .
I

can look at , H⇒¥¥- , f%Y¥-

pp$ We want these ratios to be constant.

This will give the lowest variance $8B


