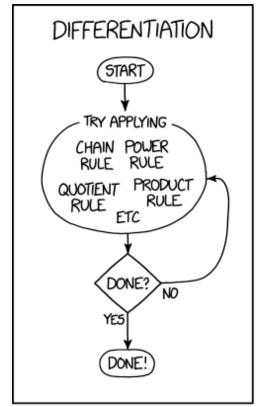
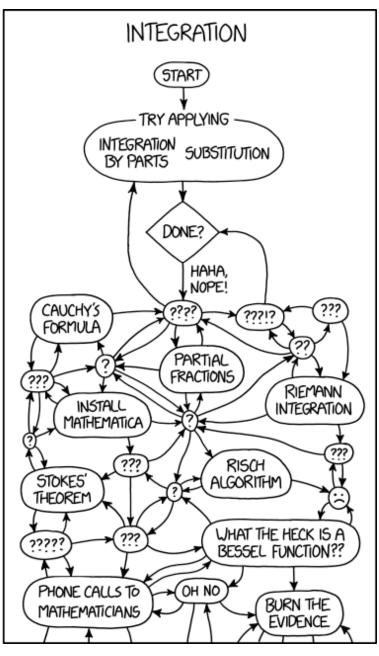
Chapter 6: Monte Carlo Integration

, ch 3

Monte Carlo integration is a statistical method based on <u>random sampling</u> in order to approximate integrals. This section could alternatively be titled,

"Integrals are hard, how can we avoid doing them?"





1 A Tale of Two Approaches

Consider a one-dimensional integral.

$$\int_{a}^{b} f(x) dx$$
"integrand"

The value of the integral can be derived analytically only for a few functions, f. For the rest, numerical approximations are often useful.

Why is integration important to statistics?

Many quantities of interest in informatical statistics can be expressed as the expectation of a function of a random variable.
$$E[g(x)] = \int g(x) \, f(x) \, dx$$
I Numerical Integration integral.

1.1 Numerical Integration

Idea: Approximate $\int_a^b f(x)dx$ via the sum of many polygons under the curve f(x).

To do this, we could partition the interval [a, b] into m subintervals $[x_i, x_{i+1}]$ for $i=0,\ldots,m-1$ with $x_0=a$ and $x_m=b$.

Within each interval, insert k+1 nodes, so for $[x_i,x_{i+1}]$ let x_{ij}^* for $j=0,\ldots,k$, then

$$\int\limits_a^b f(x)dx = \sum_{i=0}^{m-1}\int\limits_{x_i}^{x_{i+1}} f(x)dx pprox \sum_{i=0}^{m-1}\sum_{j=0}^k A_{ij}f(x_{ij}^*)$$
 with $\sum_{k \in \mathcal{K}} A_{ij}f(x_{ij}^*)$

for some set of constants, A_{ij} . x(xx) 0.4 -0.3 -× 0.2-0.1 -0.0 - $\mathcal{X}_{\mathbf{l}}$ x,=a ZM=p.

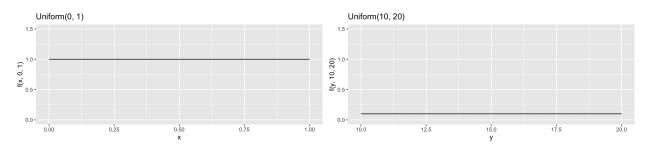
1.2 Monte Carlo Integration

How do we compute the mean of a distribution?

Example 1.1 Let $X \sim Unif(0,1)$ and $Y \sim Unif(10,20)$.

```
x <- seq(0, 1, length.out = 1000)
f <- function(x, a, b) 1/(b - a)
ggplot() +
   geom_line(aes(x, f(x, 0, 1))) +
   ylim(c(0, 1.5)) +
   ggtitle("Uniform(0, 1)")

y <- seq(10, 20, length.out = 1000)
ggplot() +
   geom_line(aes(y, f(y, 10, 20))) +
   ylim(c(0, 1.5)) +
   ggtitle("Uniform(10, 20)")</pre>
```



Theory (exact)

$$E(x) = \int_{0}^{1} x \cdot f(x) dx$$

$$= \int_{0}^{1} x \cdot 1 dx$$

$$= \left[\frac{x^{2}}{2}\right]_{0}^{1} = \frac{1}{d}.$$

$$f(y) = \begin{cases} \frac{1}{10} & 6 \leq y \leq 20 \\ 0 & 0.W. \end{cases}$$

$$E[Y] = \int_{10}^{20} y f(y) dy$$

$$= \int_{10}^{20} y dy$$

$$= \frac{1}{10} \left[\frac{y^2}{2} \right]_{10}^{20} = 15$$

What about some oper dsn?

?? Probably can't do this in closed form.

=> need approximation:

1.2.1 Notation

 $\theta = parameter of intoest (unknown).$

 $\hat{\theta}$ = estimator of θ , statistic (soretimes we write \hat{X} , \hat{S}^2 , etc. insked $\hat{f}\hat{\Theta}$).

Distribution of $\hat{\theta} = Sampling$ distribution.

 $E[\hat{ heta}]=$ theoretical mean of the scapping dsn of $\hat{ heta}$ "on average, what is the value of $\hat{ heta}$?"

 $Var(\hat{\theta}) = Variance of sampling don of <math>\hat{\theta}$

 $\Rightarrow \hat{E}[\hat{\theta}] = \text{estimated treen of sampling den } \hat{\theta}$ $\text{estimated} \quad \Rightarrow \hat{Var}(\hat{\theta}) = \text{estimated variance } \hat{\theta} \text{ sampling den } \hat{\theta}.$

 $se(\hat{\theta}) = \sqrt{Var(\hat{\theta})}$ $\hat{se}(\hat{\theta}) = \sqrt{Var(\hat{\theta})}.$

1.2.2 Monte Carlo Simulation

What is Monte Carlo simulation?

Computer simulation that generates a large of sample from a dsn. The dsn characterizes the population from which a sample is drawn.

(gourds like ch. 3).

1.2.3 Monte Carlo Integration

parameter Thing he rove about, estimating (

To approximate $\widehat{\theta}=E[X]=\int x f(x) dx$, we can obtain an iid random sample X_1,\ldots,X_n from f and then approximate θ via the sample average

$$\hat{\theta} = \frac{1}{m} \sum_{i=1}^{m} X_i$$

Example 1.2 Again, let $X \sim Unif(0,1)$ and $Y \sim Unif(10,20)$. To estimate E[X] and E[Y] using a Monte Carlo approach,

Ly by randomly generating a sample.

(1) draw
$$X_{1,-}, X_{m} \sim U_{m}f(O_{1})$$
.

(2) Compute $\hat{\theta} = \frac{1}{m} \sum_{i=1}^{m} X_{i}$

(2) Compute $\hat{\theta} = \frac{1}{m} \sum_{i=1}^{m} X_{i}$

(a) Co-pute
$$\hat{\theta} = \frac{r}{m} \sum_{i=1}^{m} X_i$$

This is useful when we con't compute EX in closed form. Also useful for other integrals.

Now consider E[g(X)].

$$heta = E[g(X)] = \int\limits_{-\infty}^{\infty} g(x)f(x)dx.$$

The Monte Carlo approximation of θ could then be obtained by

2.
$$\theta = \frac{1}{M} \sum_{i=1}^{M} q(X_i)$$

Definition 1.1 *Monte Carlo integration* is the statistical estimation of the value of an integral using evaluations of an integrand at a set of points drawn randomly from a distirbution with support over the range of integration.

Example 1.3

A parameter estimation: linear models vs. generalized linear models.
$$\begin{cases} Y = X \beta + \Sigma, \quad \Sigma \cap N(0, \sigma^2) \end{cases} \qquad \hat{\beta} = (X^T X)^{-1} X^T Y \text{ in dond from.}$$

$$\begin{cases} (QLM): \quad Y \cap Binon(\rho) \\ \text{logit}(\rho) = \beta o + \beta_1 X \end{cases} \qquad \text{no closed form estimate for } \beta_0, \beta_1.$$

$$\begin{cases} (QLM): \quad Y \cap Binon(\rho) \\ \text{logit}(\rho) = \beta o + \beta_1 X \end{cases} \qquad \text{no closed form estimate for } \beta_0, \beta_1.$$

$$\begin{cases} (QLM): \quad Y \cap Binon(\rho) \\ \text{logit}(\rho) = \beta o + \beta_1 X \end{cases} \qquad \text{no closed form estimate for } \beta_0, \beta_1.$$
 Why the mean?
$$\begin{cases} (QLM): \quad Y \cap Binon(\rho) \\ \text{logit}(\rho) = \beta o + \beta_1 X \end{cases} \qquad \text{no closed form estimate for } \beta_0, \beta_1.$$
 Why the mean?
$$\begin{cases} (QLM): \quad Y \cap Binon(\rho) \\ \text{logit}(\rho) = \beta o + \beta_1 X \end{cases} \qquad \text{no closed form estimate for } \beta_0, \beta_1.$$
 Why the mean?
$$\begin{cases} (QLM): \quad Y \cap Binon(\rho) \\ \text{logit}(\rho) = \beta o + \beta_1 X \end{cases} \qquad \text{no closed form estimate for } \beta_0, \beta_1.$$
 Why the mean?
$$\begin{cases} (QLM): \quad Y \cap Binon(\rho) \\ \text{logit}(\rho) = \beta o + \beta_1 X \end{cases} \qquad \text{no closed form estimate for } \beta_0, \beta_1.$$

Let
$$E[g(X)] = \theta$$
, then
$$E[\hat{\theta}] = E\left[\frac{1}{m}\sum_{i=1}^{m}f(X_i)\right] = \frac{1}{m}\sum_{i=1}^{m}E[g(X_i)] = \frac{1}{m}\left[\theta + ... + \theta\right] = \theta$$
So $\hat{\theta}$ is vabiased.

and, by the strong law of large numbers,

$$\hat{\theta} = \frac{1}{m} \sum_{i=1}^{m} q(x_i) \longrightarrow E[q(x)] = 0$$

Example 1.4 Let $v(x) = (g(x) - \theta)^2$, where $\theta = E[g(X)]$, and assume $g(X)^2$ has finite expectation under f. Then

$$Var(g(X)) = E[(g(X) - \theta)^2] = E[v(X)].$$

We can estimate this using a Monte Carlo approach.

(1) Sample
$$X_1, ..., X_m \sim f$$

(2) Compute $\lim_{i \to 1} \sum_{j=1}^m \nabla(X_j) = \lim_{i \to 1} \sum_{j=1}^m (g(X) - \theta)^2$

Var $(q(X)) = \hat{E}(v(X))$.

Var $(q(X)) = \frac{1}{2} (v(X))$.

Want to use this to estimate sampling variance of
$$\hat{\theta}$$

$$Var(\hat{\theta}) = Var(\frac{1}{m} \sum_{i=1}^{m} g(x_i)) = \frac{1}{m^2} \sum_{i=1}^{m} Varg(x_i) = \frac{1}{m} Var(g(x_i))$$
approximate this using $Var(g(x_i))$

When Var(g(x)) and is finite, CLT states.

Hence if in is large we can use $\widehat{Var}(g(x))$ plug in from prev. page. $\widehat{\theta} \stackrel{\sim}{\sim} N(\theta, \frac{Var(g(x))}{m})$

We can use this to put confidence limits or error bounds on the μC estimate of any integral θ .

Monte Carlo integration provides slow convergence, i.e. even though by the SLLN we know we have convergence, it may take us a while to get there.

is reed in to be tage

But, Monte Carlo integration is a very powerful tool. While numerical integration methods are difficult to extend to multiple dimensions and work best with a smooth integrand, Monte Carlo does not suffer these weaknesses.

Numeric

1.2.4 Algorithm

The approach to finding a Monte Carlo estimator for
$$\int \frac{dx}{dx} dx$$
 is as follows.

1. Newrite $\int h(x)dx = \int g(x)f(x) dx$ where f is a pdf.

Select g , f to define f as an expected value.

2. derive the estimator s.t.
$$\theta$$
 approximates $\theta = E[g(x)] = Sg(x)f(x)dx$.

$$\lim_{m \to \infty} g(x_i), X_i \stackrel{ind}{\sim} f.$$
3. Sample $X_1, ..., X_m \vee f$

4. Compute
$$\hat{\theta} = \prod_{i=1}^{m} g(x_i)$$

Example 1.5 Estimate $\theta = \int_0^1 h(x) dx$.

(1) Let
$$f$$
 be the Uniform (o, l) density.

$$\theta = \int_0^l h(x) dx = \int_0^l h(x) \cdot 1 dx \implies h(x) = g(x).$$

$$u \mapsto f(o, l) p df.$$
(2) $\Rightarrow \hat{\theta} = \frac{1}{m} \sum_{m=1}^{m} g(x_i) = \frac{1}{m} \sum_{m=1}^{m} h(x_i), \quad X_i \stackrel{iid}{\sim} U_n i f(o, l).$

3) Sample
$$X_1, ..., X_m \sim Unif(o_{i1})$$
.
 $> x_1 \leftarrow runif(m, o_{i1})$.
4) Compute $\hat{\theta} = \frac{1}{m} \sum_{i=1}^{m} h(X_i)$

Example 1.6 Estimate $\theta = \int_a^b h(x) dx$.

Example 1.6 Estimate
$$\theta = \int_{a}^{b} h(x)dx$$
.

(1) choose $f = \text{Unif}(a,b)$, so that $f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq x \leq 1 \\ 0 & \text{o.w.} \end{cases}$

$$\theta = \int_{a}^{b} h(x) dx = \begin{cases} \frac{1}{b-a} & \text{if } a \leq x \leq 1 \\ 0 & \text{o.w.} \end{cases}$$

(2)
$$\hat{\partial} = \frac{1}{m} \sum_{i=1}^{m} (b-a)h(X_i)$$
 for $X_i \stackrel{\text{def}}{\sim} U_{\text{nif}}(a,b)$.

$$\begin{array}{lll}
2) & \hat{\theta} = \frac{1}{m} \sum_{i=1}^{n} (b-a)h(X_i) & \text{for } X_i \stackrel{\text{iid}}{\sim} \text{Unif}(a,b). \\
3) & \text{Scaple } X_{1,1-2}X_{n} \sim \text{Unif}(a,b) & \text{xc-ru-if}(m,a,b). \\
& \text{Another approach:} & \text{mean}((b-a)h(x_i)).
\end{array}$$

What if I dose
$$Y \sim U_n$$
 if $(O_{(1)})$ instead? Then $f(y) = \begin{cases} 1 & 0 \leq y \leq 1 \\ 0 & o. w. \end{cases}$

But we care about
$$\begin{cases} 3 \\ 6 \end{cases} h(x) dx$$

We want to integrate from (a,6), but The support of the den is (O,1). We can use a change of variable to use MC integration. (a,b) maps to (0,1)

Need a function that $x \in (a,b)$ to $y \in (0,1)$. We will use a linear transformation.

$$\frac{x-a}{b-a} = \frac{y-0}{1-0} \Rightarrow \frac{x-a}{b-a} = y.$$

$$\int solve for x$$

$$x = a + y(b-a).$$

$$dx = (b-a) dy$$
.

Now
$$\theta = \int_a^b h(x) dx = \int_a^$$

$$g(y) \cdot f(y) = E[g(y)], y \sim Unif(o,1)$$

To get a
$$\hat{\theta}$$
,

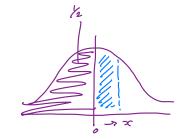
We can use This if limits of integration don't match any density!

Example 1.7 Monte Carlo integration for the standard Normal cdf. Let $X \sim N(0,1)$, then the pdf of X is

$$\phi(x) = f(x) = rac{1}{\sqrt{2\pi}} \mathrm{exp}igg(-rac{x^2}{2}igg), \qquad -\infty < x < \infty$$

and the cdf of X is

$$\Phi(x) = F(x) = \int\limits_{-\infty}^{x} rac{1}{\sqrt{2\pi}} \mathrm{exp}igg(-rac{t^2}{2}igg) dt.$$



We will look at 3 methods to estimate $\Phi(x)$ for x > 0.

We will look at 3 methods to estimate
$$\Phi(x)$$
 for $x > 0$.

Method 1 Note that for $x > 0$, $\Phi(x) = \int_{-\infty}^{\infty} \beta(x) dx + \int_{-\infty}^{\infty} \varphi(x) dx$.

The provides

Support of you Unif (0,1) is (0,1). We vart a function that maps te [0,2) to yt[0,1].

linear
$$\frac{t-0}{x-0} = \frac{7-0}{1-0} \Rightarrow \frac{t}{x} = y$$
.

$$\int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^{2}}{2}\right) dt = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x \cdot y)^{2}}{2}\right) x dy.$$

$$g(y), \quad y \sim \text{Unif(0,1)}.$$

a MC estimate could be obtained by:

(2) Compute
$$\hat{Q} = \frac{1}{w} \sum_{i=1}^{M} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x \cdot y_i)^2}{2}\right) x + \frac{1}{2}$$
 for $x \ge 0$.

Could generate XN Unif (0, x).

Homework

Method 3

Indicator function

Il be an indicator function.

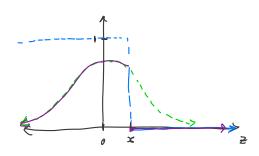
$$\mathbb{T}(Z \leq Z) = \begin{cases} 1 & \text{if } Z \leq Z \\ 0 & \text{operwise.} \end{cases}$$

Let ZNN(0,1). Then,

$$E_{z}\left[\pm\left(z\leq x\right)\right] = \int_{-\infty}^{\infty} \left[\left(z\leq x\right)f(z)\right] dz$$

$$= \int_{-\infty}^{\infty} \phi(z) dz$$

$$= \int_{-\infty}^{\infty} (x)$$



So an MC estimator of D(x) is:

- (1) Generate Zin--, Zm ~N(O,1),
- counts # of Z_i 's $\leq x$.

Con show Method 3 has less Lias in tails and Method 2 has less Sias inthe cater.

(2) Method 3 works for any don to approximate the cdf (change f accordizly)

1.2.5 Inference for MC Estimators

The Central Limit Theorem implies

$$\frac{\hat{\theta} - E(\hat{\theta})}{\sqrt{Var(\hat{\theta})}} \longrightarrow d N(0,1)$$

MC

So, we can construct confidence intervals for our estimator

1. 95% (I for
$$E(\hat{\theta})$$
: $\hat{\theta} = 1.96 \sqrt{Var}(\hat{\theta})$

2. (HW) 95% CI for
$$\Phi(2)$$
: $\hat{\Phi}(2) \pm 1.96 \sqrt{\hat{Vor}(\Phi(2))}$

But we need to estimate $Var(\hat{\theta})$.

Recall

Assume
$$\theta = \mathbb{E}\left[q(x)\right] = \int_{\infty}^{\infty} g(x) f(x) dx$$

$$G^{2} = \operatorname{Var}\left[q(x)\right].$$

In the way $(\hat{\theta}) = \operatorname{Var}\left[\frac{1}{m}\sum_{i=1}^{m}q(x_{i})\right] = \frac{1}{m^{2}}\sum_{i=1}^{m}\operatorname{Var}\left[q(x_{i})\right] = \frac{1}{m}\sum_{i=1}^{m}\operatorname{Var}\left[q(x_{i})\right] = \frac{1}{m}\sum_{i=1}^{m}\operatorname{Va$

So, if $m \uparrow \text{then } Var(\hat{\theta}) \downarrow$. How much does changing m matter?

Example 1.8 If the current $se(\hat{\theta}) = 0.01$ based on m samples, how many more samples do we need to get $se(\hat{\theta}) = 0.0001$?

Current se
$$(\hat{\theta}) = \int 6^2 / m = .01$$

Want
$$\int \frac{6^2}{(a \cdot m)} = .0001$$

$$\int_{\mu}^{2} \cdot \frac{1}{a} = (.0001)^{2}$$

$$(.01)^{2} \cdot \frac{1}{a} = (.0001)^{2}$$

$$a = \left(\frac{.01}{.0001}\right)^{2}$$

$$= 10,000$$
We would rud 10000 x M samples to advein se $(\hat{\theta}) = .0001$?

Is there a better way to decrease the variance? Yes!