
Chapter 6: Monte Carlo Integration
Monte Carlo integration is a statistical method based on random sampling in order to ap-
proximate integrals. This section could alternatively be titled,

“Integrals are hard, how can we avoid doing them?”

https://xkcd.com/2117/
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1 A Tale of Two Approaches
Consider a one-dimensional integral.

The value of the integral can be derived analytically only for a few functions, . For the
rest, numerical approximations are often useful.

Why is integration important to statistics?

1.1 Numerical Integration

Idea: Approximate  via the sum of many polygons under the curve .

To do this, we could partition the interval  into  subintervals  for 
 with  and .

Within each interval, insert  nodes, so for  let  for , then

for some set of constants, .
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1.2 Monte Carlo Integration

How do we compute the mean of a distribution?

Example 1.1 Let  and .

Theory

x <- seq(0, 1, length.out = 1000)
f <- function(x, a, b) 1/(b - a)
ggplot() + 
  geom_line(aes(x, f(x, 0, 1))) +
  ylim(c(0, 1.5)) +
  ggtitle("Uniform(0, 1)")

y <- seq(10, 20, length.out = 1000)
ggplot() + 
  geom_line(aes(y, f(y, 10, 20))) +
  ylim(c(0, 1.5)) +
  ggtitle("Uniform(10, 20)")

f-(g) = {
÷ • e- Yezo

(exact) 0 o.to
.

A
20

E- [Y] = f.oyftydyE (X) = Sox . flxldx
a

= [1- dy= Sox . Idx
10

= :[¥1? --15
.= E) f- 1-2

.

What about some other
dsn ?

XM ?? Probably can't do this in closed farm
.

⇒ need approximation :
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1.2.1 Notation

Distribution of 

1.2.2 Monte Carlo Simulation

What is Monte Carlo simulation?

= parameter of interest (unknown ) .

= estimator of 0 , statistic
( sometimes we write I. 5. etc .

instead ofE) .

= sampling distribution .

= theoretical mean af the sampling dsn of E

"
on average , what

is the valve of É ?
"

there itic.cl
.

= variance of sampling dsn of É

= estimated mean of sampling dsn of É

=
estimated variance of sampling dsn of § .

e÷¥ -

- ¥-5

= Fire
.>

Computer simulation that generates a large ¥ of sample from a dsn
.

The dsn characterizes the population from which a sample is drawn
.

( sounds like Ch
.

3) .
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1.2.3 Monte Carlo Integration

To approximate , we can obtain an iid random sample 
from  and then approximate  via the sample average

Example 1.2 Again, let  and . To estimate  and 
 using a Monte Carlo approach,

Now consider .

The Monte Carlo approximation of  could then be obtained by

1. 

2. 

①parameter②
characterizing
population
thing

we f- = ÷ ?§Xi
Rare

about

estimating!

m↳ generating a sample .

{
① ^" "" " "

" """" °"

⑧ draw ✗
, ,
-

,
✗MN Unf(0,17 .

M

② compute
① = In ⇐Yi

② G-pwte É=÷nÉ✗i

This is useful when we can't compute EX in closed form . Also useful for

other integrals .

Draw X
, , .

-

, Xmnf

I = In .§g(✗ it
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De�nition 1.1 Monte Carlo integration is the statistical estimation of the value of an inte-
gral using evaluations of an integrand at a set of points drawn randomly from a distirbu-
tion with support over the range of integration.

Example 1.3

Why the mean?

Let , then

and, by the strong law of large numbers,

Example 1.4 Let , where , and assume  has �nite ex-
pectation under . Then

We can estimate this using a Monte Carlo approach.

-

① parameter estimation : linear models vs . generalized liner models.

Y=✗ptE , E~N(0,62) § = (✗TX)
"

XTY 1h closed form .

Gtm : You Binomlp)

logit(p) = Potp, ✗ no closed from estimate for po.fi .

④ estimate quartiles of a dsn .⇒ Find y sit. §→fGc)dx= •9 .

Nytimes

E[E) = E[mt.E.gl/iD--m-&EfgCxiD--m-(o-+---+0-J--0-
so É is unbiased

.

G- = d- §,g(xi)→PE[gCx)=Q

f-

① sample X
, , - .,Xm~f

② Compute mt Év(✗ it = d- E. ( ga) - 0-7
µ ,,

i"

y
don't know this

! ⑦ =E[gcxD
vircgcx))

-

- Éfroxy)
.

✓ algcxll .

→ can replace
with É =L §

,
gcxi) .

Want to use this to
estimate sampling variance of E
-

✓• (E) = vwfmE.sk/iD--m=EVarHi1--m-Wl?pp!???j-µ, using vi. (gon)
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When Vwcgcxll and is finite
,

CLT states. .

✗
②

É-aÉ_ →
d
Nloi) as

m→•.

wingman

we can use
Ñarlglxl) plug in from prev. page

.

Hence if ur is large

É info ,
vaxg.FI)

we can use this to put confidence
limits or error

bonds on the dec

estimate of any integral Q
.
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Monte Carlo integration provides slow convergence, i.e. even though by the SLLN we
know we have convergence, it may take us a while to get there.

But, Monte Carlo integration is a very powerful tool. While numerical integration methods
are dif�cult to extend to multiple dimensions and work best with a smooth integrand,
Monte Carlo does not suffer these weaknesses.

1.2.4 Algorithm

The approach to �nding a Monte Carlo estimator for  is as follows.

1. 

2. 

3. 

4. 

Example 1.5 Estimate .

-

↳ need into he large .

MC does not attempt systematic exploration of a p-dimensional support region off
.

Numeric
integration
cannot
" I { does not require integrands to

be smooth
, does not require finite support

.

the
same .

② = hlxldx
Toff

= c-[81×7]
,
✗~f

.

Rewrite 5hGod>c = Sgcx)fGc) dx where f- is a pdf.
before

we
write select g , f to define G- as an expected valve.

code . [ derive the estimators .t . É approximates 0-=E[gC×))
= Sgc>c)ftxdx .

m÷ÉgCx;) , Xi f.
Sample ✗ , , . .,Xm~f

Compute É=tmÉgCX ;) ,i-4

-

① let f be the Uniform (o, 1) density .

② = §hCx)dx = S! hcx) • 1- dx ⇒ hcx)=gC×7 .

✓

Unifco
,1) pdf. -

M

②⇒ d- = h-Eglxil-m-ME.HN ;) , ✗ ii~idunifco.it .
in

③ Sample X
, , . .,Xmn Uniform .

> x ← run if(m , 0,1 ) .

for

④ Compute É = 1- §,hCxi)
✗ g.

> mean ( h ( xD .
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Example 1.6 Estimate .

Another approach:

as x Eb

① choose 5- = UnitCaio) . so that fGd={ % o.w.

⑤ = Sbahcx> dx = %¥ÉiÉadx .

six

good .

② G- = tm§fb -a)hcxi ) for Xi "~d Unifca
,
b)

.

③ sample X
, , -Nnn Unifla,b) ✗ c- ru - if Cm, a, b) .

④ Compute É=tmÉICb-a) hcxi) mean ((b-a )*h(xD .

What if I chose Y~Unifcqn.in stead ? then fly )= {
" " Z "

O O- W .

③
But we care about Saohlxldx

We want to integrate from la
,
b)
,
but the support of the dsn is

(Q1)
.

we can use a#Ie to use MC integration . Cap) maps to
co
, D.

Need a function that xecqs) to y c- Co, ,). We
will use transformation .

÷÷=?÷ ⇒ E- =y .

solve for 2C

✗
= a + y ( b

-a)
.

dx = Cba) dy . 1.

A

Now b- = Sba hlx)dx = Soh (atYCb-apcb-akdy.ir#tYd--Efg(yD,Y~UnitlqD
.

Support of Y.

To get a É
,

① Simulate Y
, ,
- >Ymn Uniflora .

② É = ↳ §
,

h(at Yicb-aD.co -a)

We can use this if limits of integration don't match any density !
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Example 1.7 Monte Carlo integration for the standard Normal cdf. Let , then
the pdf of  is

and the cdf of  is

We will look at 3 methods to estimate  for .

-

-

-

¥¥
Method1-N.ie that for x>0, E(x)= § Gcldx + §o0tx?⃝

EE
change of

variables

support of Y - Unit 191) is (0/1) . We vwt a function that maps

te [o, >c) to y c- [0/1] .

einer t÷=r÷ ⇒ E- =y .

transformation d

t = x .Y .

dt = xody .

y
oc •

fgexpf.tn#Yxfdy .g. ¥ge×pf¥)dt=g-
gty)

,
you Uniform

.

So a MC estimate could be obtained by :

① Sample Y, , - .,Ym~Unif(0,17 .

② Compute É=÷i&¥ue×p(- ¥4T ) " t £ for xao.

Method could generate
✗~ Uniflora

.

Homework .
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1.2.5 Inference for MC Estimators

The Central Limit Theorem implies

So, we can construct con�dence intervals for our estimator

1. 

2. 

But we need to estimate .
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So, if  then . How much does changing  matter?

Example 1.8 If the current  based on  samples, how many more samples do

we need to get ?

Is there a better way to decrease the variance? Yes!


