Chapter 6: Monte Carlo Integration
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Monte Carlo integration is a statistical method based on random sampling in order to ap-
proximate integrals. This section could alternatively be titled,

“Integrals are hard, how can we avoid doing them?”
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1 A Tale of Two Approaches

Consider a one-dimensional integral.
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The value of the integral can be derived analytically only for a few functions, f. For the
rest, numerical approximations are often useful.

Why is integration important to statistics?
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1.1 Numerical Integration intsgeend.

Idea: Approximate fab f(z)dx via the sum of many polygons under the curve f(z).

To do this, we could partition the interval [a, b] into m subintervals [z;, ;11| for
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1.2 Monte Carlo Integration

1.2 Monte Carlo Integration

How do we compute the mean of a distribution?

Example 1.1 Let X ~ Unif(0,1) and Y ~ Unif(10,20).

x <- seq(0,

1,

length.out =

1000)

f <- function(x, a, b) 1/(b - a)

ggplot() +

geom_line(aes(x, f(x, O,
1.5)) +
ggtitle("Uniform(O0,

ylim(c(O,

y <- seq(l0,
ggplot() +

geom_line(aes(y, f(y,
1.5)) +
ggtitle("Uniform(10,

ylim(c(O,

Uniform(0, 1)
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20, length.out =
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4 1 A Tale of Two Approaches

1.2.1 Notation
0 = porames o olest (eobonun)

4
— € v ’
Statrshc ( fonetimes e bnite X, S efe. /HS**-/#Q)

0 = echmator 4 &,

R . SR
Distribution of 8 = g"”ﬂlmff it

'h'l f(‘/i’lf,l/ﬂa dsn 6ﬁ g

E[f] = hacked mean off "
“on oyernge, WA 7 P2 vole of 87
S et -, dsn € 5
Var(0) - variome o eyt

aqa
"JJ — VAaT(é) - ec‘ln‘,.,;ko‘ Vo dnex Cg Jbaf[la ol s oﬁ.@

se(f) = m
L? se(d) = s

1.2.2 Monte Carlo Simulation

What is Monte Carlo simulation?
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1.2 Monte Carlo Integration

1.2.3 Monte Carlo Integration

To approximate § = E[X] = [z f(z)dz, we can obtain an iid random sample X7,..., X,
from f and then approximate 6 via the sample average

Example 1.2 Again, let X ~ Unif(0,1) and Y ~ Unif(10,20). To estimate E[X]| and
E]Y] using a Monte Carlo approach,

Now consider E[g(X)].

o0

6 = Elg(X)) = / o) f(z)d.

The Monte Carlo approximation of 6 could then be obtained by

1.



6 1 A Tale of Two Approaches

Definition 1.1 Monte Carlo integration is the statistical estimation of the value of an inte-
gral using evaluations of an integrand at a set of points drawn randomly from a distirbu-
tion with support over the range of integration.

Example 1.3

Why the mean?

Let E[g(X)] = 0, then

and, by the strong law of large numbers,

Example 1.4 Let v(z) = (g(z) — 6)2, where = E[g(X)], and assume g(X)? has finite ex-
pectation under f. Then

Var(g(X)) = E[(9(X) — 6)°] = E[v(X)].

We can estimate this using a Monte Carlo approach.



1.2 Monte Carlo Integration



8 1 A Tale of Two Approaches

Monte Carlo integration provides slow convergence, i.e. even though by the SLLN we
know we have convergence, it may take us a while to get there.

But, Monte Carlo integration is a very powerful tool. While numerical integration methods
are difficult to extend to multiple dimensions and work best with a smooth integrand,
Monte Carlo does not suffer these weaknesses.

1.2.4 Algorithm
The approach to finding a Monte Carlo estimator for [ g(z)f(z)dz is as follows.

1.

Example 1.5 Estimate 0 = fol h(z)dz.



1.2 Monte Carlo Integration

Example 1.6 Estimate 0 = fab h(z)dz.

Another approach:
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Example 1.7 Monte Carlo integration for the standard Normal cdf. Let X ~ N(0, 1), then
the pdf of X is

22
exp(——), —o0 <z <00

ble) = f(z) = 4

27

and the cdf of X is

o00) 70— [ (5 )ar

We will look at 3 methods to estimate ®(z) for z > 0.



1.2 Monte Carlo Integration

11



12

1.2.5 Inference for MC Estimators

The Central Limit Theorem implies

So, we can construct confidence intervals for our estimator

1.

But we need to estimate Var(6).

1 A Tale of Two Approaches



1.2 Monte Carlo Integration

So, if m 1 then Var(d) |. How much does changing m matter?
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Example 1.8 If the current se(d) = 0.01 based on m samples, how many more samples do

~

we need to get se(6) = 0.00012

Is there a better way to decrease the variance? Yes!



