
Chapter 3: Methods for Simulating Data
Statisticians (and other users of data) need to simulate data for many reasons.

For example, I simulate as a way to check whether a model is appropriate. If the observed
data are similar to the data I generated, then this is one way to show my model may be a
good one.

It is also sometimes useful to simulate data from a distribution when I need to estimate an
expected value (approximate an integral).

R can already generate data from many (named) distributions:

##  [1] -1.0365488  0.6152833  1.4729326 -0.6826873 -0.6018386 -1.3526097 
##  [7]  0.8607387  0.7203705  0.1078532 -0.5745512

##  [1] -4.5092359  0.4464354 -7.9689786 -0.4342956 -5.8546081  2.7596877 
##  [7] -3.2762745 -2.1184014  2.8218477 -5.0927654

##  [1] 0.67720831 0.04377997 5.38745038 0.48773005 1.18690322 0.92734297 
##  [7] 0.33936255 0.99803323 0.27831305 0.94257810

But what about when we don’t have a function to do it?

set.seed(400) #reproducibility

rnorm(10) # 10 observations of a N(0,1) r.v.

rnorm(10, 0, 5) # 10 observations of a N(0,5^2) r.v.

rexp(10) # 10 observations from an Exp(1) r.v.

← In . 5 (later)

-

( pseudorandom) .

↳ we need to write our own functions to simulate draws

from other distributions.
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1 Inverse Transform Method
Theorem 1.1 (Probability Integral Transform) If  is a continuous r.v. with cdf , then 

.

This leads to to the following method for simulating data.

Inverse Transform Method:

First, generate  from Uniform . Then,  is a realization from .

Note: 

1.1 Algorithm

1. Derive the inverse function . 

2. Write a function to compute . 

3. For each realization,

a. 

b. 

"

← run if

-

F-
•

may not be available in closed form . If that's the case
,
use something else.

To do this
,

let Ftx)=u .

Then solve fer k

to find ✗ = Élu).

↳ in R
.

→ simulated value.

generate a random valve u from Unif Cool) .

recommend
game

agout { Compute x -

- F-
'

Cu ) .
vectorization as

in
R .
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Example 1.1 Simulate a random sample of size  from the pdf .

1. 

2. 

3. 

1.2 Discrete RVs

If  is a discrete random variable and  are the points of discontinuity
of , then the inverse transform is  where . This
leads to the following algorithm:

1. Generate a r.v.  from Unif .

2. Select  where .

# write code for inverse transform example
# f_X(x) = 3x^2, 0 <= x \<= 1

Find the Cdf Fx :

F×C>c) = PCXE x)
- x

0 ✗ co

= S? 3y2dy = y
' Jo =µ ,

✗ c- Coil] .

7- x >I

Find Fj
'

:

U= Fxtx) = x
>
⇒ uh = 2C

⇒ FI (a) = Uk OE u c- A

Tange of f- (x ).

① Write function for f-
→

in R
.

② sample values from Uniflo, 1) .

③ evaluate x= F-
•

(a) .

step function::* .
RV)

- __•

① If u-- 0,5 e-g.
Fx ^

p a-

I

1

I

① a - .
. . . . . . . . . . . . . . .

,
. . .

"¥É

÷o!
" ± :*

I ⇒ select xz.

I f l

l l
l

l
l

x
x , X2 ✗

3
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Example 1.2 Generate 1000 samples from the following discrete distribution.

x 1.0 2.0 3.0
f 0.1 0.2 0.7

x <- 1:3
p <- c(0.1, 0.2, 0.7)

# write code to sample from discrete dsn
n <- 1000

youth
NRJ

there is a simpler way
to do this using function .

remember to allow
replacement

and specify the prob
. vector
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2 Acceptance-Reject Method
The goal is to generate realizations from a target density, .

Most cdfs cannot be inverted in closed form.

The Acceptance-Reject (or “Accept-Reject”) samples from a distribution that is similar to 
 and then adjusts by only accepting a certain proportion of those samples.

The method is outlined below:

Let  denote another density from which we know how to sample and we can easily calcu-
late .

Let  denote an envelope, having the property  for all 
 for a given constant .

The Accept-Reject method then follows by sampling  and .

If , accept . Set  and consider  to be an element of the target
random sample.

Note:  is the expected proportion of candidates that are accepted.

2.1 Algorithm

1. Find a suitable density  and envelope .

2. Sample .

3. Sample .

4. If , accept .

5. Repeat from Step 2 until you have generated your desired sample size.

something

µ we
can try if

we
can't find f-

"

#
the dsn we

want

samples from
.

-

⇒ inverse transform method not possible .

I

target
and reject the rest.

requirements for g.
① ⑦

→proposal distribution
"

← the envelopecrores alloff .

support
⇒

upport of g must include support
off !

Question :

be hard about

this ?
We on use this to evaluate efficiency of our algorithm .

- what might be

slow about this?

*
proposal y

find a
s.t. e. gcx)

7ft).

$ Requirement : The support of g must include support of ftp.

• Examples : If 5- IN Coir and g-= Unit C- 10,107.BA#i-aX-g--£10,10T .

is it true that [-1%10]>-112? No .¥"⇒÷ . .

Hg Xg
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2.2 Envelopes

Good envelopes have the following properties:

A simple approach to �nding the envelope:

-÷÷÷¥,
y

① envelope exceeds target acywbe_ ← support of g Must
include Thesupport off.

② Easy to sample from g.

③ Generate few_ rejected draws
( save the) .

fin some cases .

Say the support of f- is 0 Exel .

let glx) I Unifco,D= {
1 if ✗ c- C:D
°

o -
w
.

← support of g matches support off
!

Find Max (81×1) and let c- mcxlftxi)
04C c- I OEXEI .

*
"

* This is ONLY relevant if ¥ = [oil ] * q ,

plotting is your friend for other supports . *

to help find c.
T
this isn't always

the most efficient ray

but it will always work when *g-
= [oil ) .
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Example 2.1 We want to generate a random variable with pdf , 
. This is a Beta  distribution.

Can we invert  analytically?

If not, �nd the maximum of .

# pdf function, could use dbeta() instead
f <- function(x) {
    60*x^3*(1-x)^2
}

# plot pdf
x <- seq(0, 1, length.out = 100)
ggplot() +
  geom_line(aes(x, f(x)))

←

f- → could just use rbeta C) in R
.

No .
-

flu)= 6028cL -x5
f-(07--5-4)=05-

'

(a) = 60 [3×41 -xp - 2.x
>
( 1-xD

= 60sec 1-⇒ [3G -x) -2x] f
= 60NCtx )- (3-5×7--0 at 2=0,2--1 , orK=}☐

maxfcx) occurs at x=} → c- maxftx) = 5- (3) = 60 ( Zs )
>

( I -3g) = 2.0736 .

AEG, ')

-

1h base R.

sequence of
x .

rakes.
←

made

t
draw block line

← endnote f at each x .

a. one -
- - - - -

- - - - - -

i ,
- -
- -

H %
•

vi. 4s
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envelope <- function(x) {
  ## create the envelope function
}

# Accept reject algorithm
n <- 1000 # number of samples wanted
accepted <- 0 # number of accepted samples
samples <- rep(NA, n) # store the samples here

while(accepted < n) {
  # sample y from g
  
  # sample u from uniform(0,1)
  u <- runif(1)
  
  if(u < f(y)/envelope(y)) {
    # accept
    accepted <- accepted + 1
    samples[accepted] <- y
  }
}

ggplot() +
  geom_histogram(aes(sample, y = ..density..), bins = 50, ) +
  geom_line(aes(x, f(x)), colour = "red") +
  xlab("x") + ylab("f(x)")

✗
c. uaifco, 1) pdf
c-- 5- ( Zs)

.

→→
←

while we don't have enough samples accepted, keep running
the loop .

①← Unit 10,1 ) ,
y ← runif (1) .

← always from Unif 10,17.

g sample
from proposal.

←
increment accepted counter

so loop eventually
ends

.

①←
accept -

Y as a sample from f-

⇒ store it

the
scale of

density
instead of

raw
counts .

s

that
histogram

is
on

"

www.t.y.wuene"" '
peoretial →
pdt .

y
labels for xiy

axes .
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2.3 Why does this work?

Recall that we require

Thus,

The larger the ratio , the more the random variable  looks like a random variable
distributed with pdf  and the more likely  is to be accepted.

2.4 Additional Resources

See p.g. 69-70 of Rizzo for a proof of the validity of the method.

e.(g) =

lots of room

not nM§m§
.

a- :÷i-•¥÷¥÷÷:
ng

¢ pecommtddt .
Come read 1h OH or in library .
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3 Transformation Methods
We have already used one transformation method – Inverse transform method – but there
are many other transformations we can apply to random variables.

1. If , then 

2. If  and  are independent, then 

3. If  and  are independendent, then 

4. If  and  are independent, then 

De�nition 3.1 A transformation is any function of one or more random variables.

Sometimes we want to transform random variables if observed data don’t �t a model that
might otherwise be appropriate. Sometimes we want to perform inference about a new
statistic.

Example 3.1 If . What is the distribution of ?

Example 3.2 If , what is the distribution of ?

Example 3.3 For  iid random variables, what is the distribution of the median
of ? What is the distribution of the order statistics? ?

There are many approaches to deriving the pdf of a transformed variable.

i.

Fmn

tn

Betar, s) .

-

- *

Can derive EXI ~ Binomial Cn,p7 .

Con desire ✗ + s ~ NC 5,17.

This is more complex . . .

But possible .

- change of variable j continuous
"

- Moment generating function

Mxlt) = El et✗)
.

If g
is monotone , then for cts ✗ and

Y=gW,
- Convolution theorem

fy(g) = {
" (841)1175871 yey

E- ✗ + Y.

O o -
w .
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But the theory isn’t always available. What can we do?

3.1 Algorithm

Let  be a set of independent random variables with pdfs , respec-

tively, and let  be some transformation we are interested in simulating from.

1. Simulate .

2. Compute . This is one draw from .

3. Repeat Steps 1-2 many times to simulate from the target distribution.

Example 3.4 It is possible to show for , . Imag-

ine that we cannot use the rchisq function. How would you simulate ?

library(tidyverse)

# function for squared r.v.s
squares <- function(x) x^2

sample_z <- function(n, p) {
  # store the samples
  samples <- data.frame(matrix(rnorm(n*p), nrow = n))

  samples %>% 
    mutate_all("squares") %>% # square the rvs
    rowSums() # sum over rows
}

# get samples
n <- 1000 # number of samples

# apply our function over different degrees of freedom
samples <- data.frame(chisq_2 = sample_z(n, 2),
                      chisq_5 = sample_z(n, 5),
                      chisq_10 = sample_z(n, 10),

Use computational statistical
methods . we can

simulate from

transformed distributors .

☐ ←
either straightforward craned )

or inverse calf, accept
- reject .

-

0
① Simulate X

, , -¥10,11 .
② Compute Exi

③ repeat 10-20
.

←
# of r.v.

's

dfÑp.

←
This is

n samples of

p
NCO, 1)i-dep.ru

.
's
.

-

-

golf
÷
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                      chisq_100 = sample_z(n, 100))

# plot results
samples %>%
  gather(distribution, sample, everything()) %>% # make easier to 
plot w/ facets

  separate(distribution, into = c("dsn_name", "df")) %>% # get the df
  mutate(df = as.numeric(df)) %>% # make numeric
  mutate(pdf = dchisq(sample, df)) %>% # add density function values 
  ggplot() + # plot
  geom_histogram(aes(sample, y = ..density..)) + # samples
  geom_line(aes(sample, pdf), colour = "red") + # true pdf
  facet_wrap(~df, scales = "free")

-

_f/ density y
scale (not count scale) .

-

in red.

Xi+xE ✗it . . -
+ Is

✗it . . - + XF
✗Ft - - + ✗ oof .
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4 Mixture Distributions

The faithful dataset in R contains data on eruptions of Old Faithful (Geyser in Yellow-

stone National Park).

##   eruptions waiting 
## 1     3.600      79 
## 2     1.800      54 
## 3     3.333      74 
## 4     2.283      62 
## 5     4.533      85 
## 6     2.883      55

What is the shape of these distributions?

head(faithful)

faithful %>%
  gather(variable, value) %>%
  ggplot() +
  geom_histogram(aes(value), bins = 50) +
  facet_wrap(~variable, scales = "free")

Mm
Bimodal i. e. two

modes .
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De�nition 4.1 A random variable  is a discrete mixture if the distribution of  is a
weighted sum  for some sequence of random variables  and 

 such that .

For  r.v.s,

0
- -

e-
of distributions

.

fy (g) = 0-fn.ly) + G-a) 8×4×7.
r

two different distributions
!

How do we simulate from this distribution ?

There are 2 sources of variability :

2- ~ Bernoulli (o) → if { E-
• Y~f*

,

E- 0 Y~fxz
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Example 4.1

4.1 Mixtures vs. Sums

Note that mixture distributions are not the same as the distribution of a sum of r.v.s.

x <- seq(-5, 25, length.out = 100)

mixture <- function(x, means, sd) {
  # x is the vector of points to evaluate the function at
  # means is a vector, sd is a single number
  f <- rep(0, length(x))
  for(mean in means) { 
    f <- f + dnorm(x, mean, sd)/length(means) # why do I divide?
  }
  f
}

# look at mixtures of N(mu, 4) for different values of mu
data.frame(x, 
           f1 = mixture(x, c(5, 10, 15), 2), 
           f2 = mixture(x, c(5, 6, 7), 2),
           f3 = mixture(x, c(5, 10, 20), 2),
           f4 = mixture(x, c(1, 10, 20), 2)) %>%
  gather(mixture, value, -x) %>%
  ggplot() +
  geom_line(aes(x, value)) +
  facet_wrap(.~mixture, scales = "free_y")

✓
theta

-

equally weighted each dsn

( we don't have to equally weight, just
need

EOi
--1

.

c

AN ax

an nm

-

mixtures are weighted sums of distributing

Not distributions of weighted sums !
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Example 4.2 Let  and , independent.

 such that .

What about ?

n <- 1000
u <- rbinom(n, 1, 0.5)

z <- u*rnorm(n) + (1 - u)*rnorm(n, 4, 1)

ggplot() +
  geom_histogram(aes(z), bins = 50)

C- ( s) = Ectzlx , +XD)
=

I EX ,
+ JEX , = I (-0+4)--2 .

Var( s)
= Var ( b. CX , + ✗d)

"ME
= tvwx ,

+ 4- varxz = 4- ( I + 1)
= I

Can in fact show S = Iz ( ✗ ,
+✗a) ~ N (z, E)

this is a unimodal dsn .

-

is a mixture of the two .

✗ d%Eh dsn

NCQD N(4,1 ) .

x
change a← rbinom (n

,
I
,
0.7) to choose f×

,

w
- p . 0.7.
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4.2 Models for Count Data (refresher)

Recall that the Poisson  distribution is useful for modeling count data.

Where  number of events occuring in a �xed period of time or space.

When the mean  is low, then the data consists of mostly low values (i.e. , etc.) and
less frequently higher values.

As the mean count increases, the skewness goes away and the distribution becomes ap-
proximately normal.

With the Poisson distribution,

Example 4.3

Example 4.4 The Colorado division of Parks and Wildlife has hired you to analyze their
data on the number of �sh caught in Horsetooth resevoir by visitors. Each visitor was
asked - How long did you stay? - How many �sh did you catch? - Other questions: How
many people in your group, were children in your group, etc.

Some visiters do not �sh, but there is not data on if a visitor �shed or not. Some visitors
who did �sh did not catch any �sh.

Note, this is modi�ed from https://stats.idre.ucla.edu/r/dae/zip/.

fish <- read_csv("https://stats.idre.ucla.edu/stat/data/fish.csv")

-

-

← restrict the
shape

of
the

- -
-

dsn -

- # homes sold per day by a real estate company.

- # of calls per minute at a
hotel reservation call center.

- # of meows in a 2minute cat video on youtube.
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# with zeroes
ggplot(fish) + geom_histogram(aes(count), binwidth = 1)

# without zeroes
fish %>%
  filter(count > 0) %>%
  ggplot() + 
  geom_histogram(aes(count), binwidth = 1)

zoos
!

0!
This may

look

more poisson
(with

some

outliers
)

.
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A zero-in�ated model assumes that the zero observations have two different origins –
structural and sampling zeroes.

Example 4.5

A zero-in�ated model is a mixture model because the distribution is a weighted average of
the sampling model (i.e. Poisson) and a point-mass at .

For ,

So that,

To simulate from this distribution,

n <- 1000
lambda <- 5
pi <- 0.3

u <- rbinom(n, 1, pi)
zip <- u*0 + (1-u)*rpois(n, lambda)

-
→ anon-z-oisimpsiib.ie.→

a Zero is possible and occurs by chance .

Outcome of a study = # cows
with foot and mouth disease (FMD) per region in Turkey .

↳ structural zeros - there
are no cows in the region

↳ sampling zeros
- cows in the regions butn.FMD.

Key point : you don't know if region has no cows or no disease
.

K structural zeroes.

{
0 up.

It a-A) exp c-a)

K up . G- it)*¥. K -

-1,2, - - -

2- ~ Bernat)

if 2- =\
,
4--0

2- = 0 ,
7 ~ Poisson (a) .



20 4 Mixture Distributions

# zero inflated model
ggplot() + geom_histogram(aes(zip), binwidth = 1)

# Poisson(5)
ggplot() + geom_histogram(aes(rpois(n, lambda)), binwidth = 1)

9
structural zeroes

.


