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7 Limit Theorems

Motivation

For some new statistics, we may want to derive features of the distribution of the statistic.

When we can’t do this analytically, we need to use statistical computing methods to ap-

proximate them.

We will return to some basic theory to motivate and evaluate the computational methods

to follow.

7.1 Laws of Large Numbers

Limit theorems describe the behavior of sequences of random variables as the sample size

increases ( ).

Often we describe these limits in terms of how close the sequence is to the truth.

We can evaluate this distance in several ways.

Some modes of convergence –

Laws of large numbers –

Mathematical statistics recap for computing .

If X
, , . . > ✗niiidf

finite → ① What is the distribution of ☒ =÷ÉXi
sample

limit →② What is the approximate dsn as n→o ? Normal
.

How far is I from µ ?
9

← true value he are estimating .

Statistic

How to
measure this distance ?

ex
.
II -ul or (I -MY

←of what happens to sequences
- almost surely PC limxn = ☒ ) = 1 .

n→x of r.us as n gets loge
- in probability its > o

,
ein Pllxn - * I> E) = O'} (gin as usefulh→x

approximations ! ?
- in distribution dim Fxnlx) = Fix).

n→x

e.g.
Weak LLN : sample mean In converges in probability to pop . mean it

.

strong
LLN : Sayle mean I converges a. s. A pop. mean µ .
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7.2 Central Limit Theorem

Theorem 7.1 (Central Limit Theorem (CLT)) Let  be a random sample from a
distribution with mean  and �nite variance , then the limiting distribution of 

 is .

Interpretation:

Note that the CLT doesn’t require the population distribution to be Normal.

( converges in distribution)

i. e. In ↳ X
,
XNN (µ,

•%)
.

the sampling distribution of the sample mean approaches a Normal

distribution as the sample size increases
.

Remember
.
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8 Estimates and Estimators

Let  be a random sample from a population.

Let  be a function of the sample.

Statistics estimate parameters.

Example 8.1

De�nition 8.1 An estimator is a rule for calculating an estimate of a given quantity.

De�nition 8.2 An estimate is the result of applying an estimator to observed data samples

in order to estimate a given quantity.

We need to be careful not to confuse the above ideas:

We can make any number of estimators to estimate a given quantity. How do we know the

“best” one?

Then Tn is a
" statistic

"

and the pdf of Tn is called the
"

sampling distribution of Tn
"

c-
from sample

From population

In estimates µ

5 = ÷ §
,

( Xi- In )
"

estimates 6
"

s = is estimate 6

-

A statistic is a point estimator. ( if based on observed

data
, they are estimates ]

A CI is an interval estimator.

function of r.ir . 's → estimator ( statistic) .

function of observed data Can actual #) → estimate ( sample statistic) .

fixed but unknown quantities → parameter

what are some properties we can use to say an estimator is

"

better
" then another one ?
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9 Evaluating Estimators
There are many ways we can describe how good or bad (evaluate) an estimator is.

9.1 Bias

De�nition 9.1 Let  be a random sample from a population,  a parameter of in-
terest, and  an estimator. Then the bias of  is de�ned as

De�nition 9.2 An unbiased estimator is de�ned to be an estimator 
where

Example 9.1

Example 9.2

Example 9.3

a parameter
✓ me

watts
estimate .

-

joint dsn

¥Éyd
-

of ✗ n - Hn -

e
t C- [TCX, , . .,✗n)]

= £ TCX , ,
- -in )

fz.li?dxbiasCo-n)--
0 ⇐ E- [ En] =

Of support 10, A) .
If you had used Unit 10,1) as your proposal dsn for this Rayleigh dsh,

your histogram of samples would be biased .

( too many small
valves , no large valves) .

let ✗
, ,
. . ,

Xn he a random sample from a population w/ meaner

variance 6?<x .

F- [ I] = E[ In .É×i] = In ÉEG ;)
= ÷ - n .µ=µ .

in

⇒ bias (F) = C- [I] - µ = 0 ⇒ sample mean
is an unbiased estimator torn .

Compare 2 estimators for 62 for previous example .

Sample variance :
us

.

MLE of variance :

5-- 1- ÉCXI - IT ^g2=÷É,Cx ; - IT
n - l i = ,

£2 = ^÷ •
S2 so

can shew Esa = 02

C- (6^2) = n Es
-
= ^÷ 62

⇒% is a
biased

Note for large n , 5 I
6^2 estimator.
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9.2 Mean Squared Error (MSE)

De�nition 9.3 The mean squared error (MSE) of an estimator  for parameter  is de-
�ned as

Generally, we want estimators with

Sometimes an unbiased estimator  can have a larger variance than a biased estimator 
.

Example 9.4 Let’s compare two estimators of .

I can
show .

① small bias g)
often there is the bias- variance trade-off

(can't get both) .② small variance .

C- (5) = 62 E- (E) = h÷ 62

but Vail 5) > Var (%) !

Con show :

MSE ( s2 ) =
E [ Csa - say]

= ÷ 64

msec -6^2) =E[CE -
677 = 2%1-64 .

⇒ MSE (5) > µsE(
E) .

See pg .

331 of Casella & Berger
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9.3 Standard Error

De�nition 9.4 The standard error of an estimator  of  is de�ned as

We seek estimators with small .

Example 9.5

← standard error =

S.t. deiatim of

sampling dsn of Én
.

seat)=vFÉ=F= ÷ .
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10 Comparing Estimators
We typically compare statistical estimators based on the following basic properties:

1. 

2. 

3. 

4. 

Consistency : as a 9 does the estimator converge to parameter its estimating
?

( converges in probability )

Bias : is tire estimator unbiased ? ECÉ, )=o

Efficiency : is more efficient than Én if Uw (In ) < Var(Én ).

MSE : compare MSECÉN ) to MSECÉN )
,

but remember the bias/ variance tradeoff, MSECÉ;) -_ValÉn)+(bias(Eh )J
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Example 10.1 Let us consider the ef�ciency of estimates of the center of a distribution. A
measure of central tendency estimates the central or typical value for a probability
distribution.

Mean and median are two measures of central tendency. They are both unbiased, which is
more ef�cient?

set.seed(400)

times <- 10000 # number of times to make a sample
n <- 100 # size of the sample
uniform_results <- data.frame(mean = numeric(times), median = 
numeric(times))

normal_results <- data.frame(mean = numeric(times), median = 
numeric(times))

for(i in 1:times) {
  x <- runif(n)
  y <- rnorm(n)
  uniform_results[i, "mean"] <- mean(x)
  uniform_results[i, "median"] <- median(x)
  normal_results[i, "mean"] <- mean(y)
  normal_results[i, "median"] <- median(y)
}

uniform_results %>%
  gather(statistic, value, everything()) %>%
  ggplot() +
  geom_density(aes(value, lty = statistic)) +
  ggtitle("Unif(0, 1)") +
  theme(legend.position = "bottom")

normal_results %>%
  gather(statistic, value, everything()) %>%
  ggplot() +
  geom_density(aes(value, lty = statistic)) +
  ggtitle("Normal(0, 1)") +
  theme(legend.position = "bottom")

↳ i. e.
which has smaller variance?

←
hunter of drains

from the sampling
dsn

.

] store

results .

I for 1- 10,000 draw from sampling dsn of
mean

← draw sample of size 100 fmnuif median .

← draw sampleof size 100 from Ncaa .

] plot results .←
line tiype.

estimate
'M
am →

density
pescmp
""
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Next Up In Ch. 5, we’ll look at a method that produces unbiased estimators of !

i
estimated saÑiY estimated

dsn of scmplizdsnof

mamean÷É÷. m•i÷¥•
4999

•
0494 .

true mean

=
=

true
median

the neon

trench 'm

=
=

00.5
Note

:

this
is
not

always

for both Vrifco, 1)
and NCO, 1) ,

when a
distribution

is heavy
tailed.

Bias : both mean
and median unbiased

. ✓ the
to &

d""

median
is
more

efficient
than mean .

Efficiency : mean is more efficient for Greenly , --ii.d) < Ñar(median( × , , - >Had)
.

-


