3 Bootstrapping Dependent Data

Suppose we have dependent data $\boldsymbol{y} = (y_1, \ldots, y_n)$ generated from some unknown distribution $F = F_{\boldsymbol{Y}} = F_{(Y_1, \ldots, Y_n)}$.

Goal:

To approximate
$$dsn$$
 of a statistic
 $\Theta = T(\gamma_{\pm}).$

Challenge:

We will consider 2 approaches

3.1 Model-based approach

Example 3.1 Suppose we observe a time series $\mathbf{Y} = (Y_1, \ldots, Y_n)$ which we assume is generated by an AR(1) process, i.e., "Auto-regressive"

$$Y_{t} = \alpha Y_{t-1} + \varepsilon_{t}$$
 $t = l_{1} \dots n$ $turn our problem into an iid bootstrap! $|\alpha| < l$ and $\varepsilon_{13} \dots \varepsilon_{n} \stackrel{(iid)}{\sim} (0, 6^{2})$
 $wand = variance = 6^{2}$$

If we assume an AR(1) model for the data, we can consider a method similar to bootstrapping residuals for linear regression.

() Estimute
$$\hat{\alpha}$$
 from original lata (fit the AR(1) model).
(a) Define estimate innovations $\hat{e}_{t} = Y_{t} - \hat{\alpha}Y_{t-1}^{r}$, $t=2,...,n$.
Und this mean $\overline{\hat{e}} = \frac{1}{n-1}\sum_{\tau=2}^{n} \hat{e}_{t}$
(3) Define the residuals of the model α s control innovations.
 $e_{t} = \hat{e}_{t} - \hat{e}$
(4) For $b = 1,..., B$,
 α) create the bootstrap sample $e_{0,...,e_{n}}^{*}$ by independently sampling "n+1 values
from the n-1 values $e_{t}, t=2,...,n$.
b) construct boot strap data $\gamma^{*} = (\gamma_{1,...,\gamma_{n}}^{*})$ from
 $\gamma_{0}^{*} = \hat{e}_{0}^{*}$, $\gamma_{t}^{*} = \hat{\alpha} \gamma_{t-1}^{*} + e_{t}^{*}$, $t=1,...,n$.
(5) The dsn of $\hat{\alpha}^{*}(D)$, $-, \hat{\alpha}^{*}(D)$ is used as the sampling dsn of $\hat{\alpha}$.

 ${\bf Model\text{-}based}$ – the performance of this approach depends on the model being appropriate for the data.

This may not always be a good assumption.

end of course material

3.2 Nonparametric approach

To deal with dependence in the data, we will employ a nonparametric *block* bootstrap. Idea:

resample data in blocks to preserve the dependence structure within the blocks.

3.2.1 Nonoverlapping Blocks (NBB)

Consider splitting $\mathbf{Y} = (Y_1, \ldots, Y_n)$ in b consecutive blocks of length ℓ .

We can then rewrite the data as $\mathbf{Y} = (\mathbf{B}_1, \dots, \mathbf{B}_b)$ with $\mathbf{B}_k = (Y_{(k-1)\ell+1}, \dots, Y_{k\ell})$, $k = 1, \dots, b$. $b = \lfloor \frac{n}{2} \rfloor$ "floor function" = round down

Note, the order of data within the blocks must be maintained, but the order of the blocks that are resampled does not matter.

3.2.2 Moving Blocks (MBB)

Now consider splitting $oldsymbol{Y} = (Y_1, \ldots, Y_n)$ into overlapping blocks of adjacent data points of length ℓ .

(a) Calculate \$\beta^*\$ from \$Y^*\$
(3) Repeat 1-2 \$\mathcal{R}\$ + times The obtain \$\beta^{\vec{K}(1)}\$, --, \$\beta^{\vec{K}(R)}\$

3.2.3 Choosing Block Size

If the block length is too short,

The resampling cannot capture the dependence (L=1 is the ind bootstrap!)

If the block length is too long,

Not many blocks to sample (does not resemble data generation)

<u>A symptotic result</u>: block length should increase u/ length of time series. If so, MBB & NBB produce consistent estimators of moments, correct coverage probabilities for CIs and correct error rates for tests.

There are practical methods for choosing & (Lahiri, 2003)

Your Turn

We will look at the annual numbers of lynx trappings for 1821–1934 in Canada. Taken from Brockwell & Davis (1991).

data(lynx)
plot(lynx)

Goal: Estimate the sample distribution of the mean

$$\hat{\theta} = \int_{i=1}^{k} \hat{\Sigma} y_{i}$$

theta_hat <- mean(lynx)
theta_hat</pre>

[1] 1538.018

3.2.4 Independent Bootstrap

```
library(simpleboot)
B <- 10000
### Your turn: perform the independent bootstap
## what is the bootstrap estimate se?</pre>
```

We must account for the dependence to obtain a correct estimate of the variance!

The acf (autocorrelation) in the dominant terms is positive, so we are *underestimating* the standard error.

3.2.5 Non-overlapping Block Bootstrap

```
# function to create non-overlapping blocks
nb <- function(x, b) {</pre>
  n <- length(x)
  1 <- n %/% b
  blocks <- matrix(NA, nrow = b, ncol = 1)</pre>
  for(i in 1:b) {
    blocks[i, ] <- x[((i - 1)*l + 1):(i*l)]
  }
  blocks
}
# Your turn: perform the NBB with b = 10 and l = 11
theta_hat_star_nbb <- rep(NA, B)</pre>
nb blocks <- nb(lynx, 10)</pre>
for(i in 1:B) {
  # sample blocks
  # get theta hat^*
}
# Plot your results to inspect the distribution
# What is the estimated standard error of theta hat? The Bias?
```

3.2.6 Moving Block Bootstrap

```
# function to create overlapping blocks
mb <- function(x, l) {
    n <- length(x)
    blocks <- matrix(NA, nrow = n - l + 1, ncol = l)
    for(i in 1:(n - l + 1)) {
        blocks[i, ] <- x[i:(i + l - 1)]
    }
    blocks
}
# Your turn: perform the MBB with l = 11
mb_blocks <- mb(lynx, 11)
theta_hat_star_mbb <- rep(NA, B)
for(i in 1:B) {
        # sample blocks
        # get theta_hat^*</pre>
```

}
Plot your results to inspect the distribution
What is the estimated standard error of theta hat? The Bias?

3.2.7 Choosing the Block size

Your turn: Perform the mbb for multiple block sizes l = 1:12
Create a plot of the se vs the block size. What do you notice?

4 Summary

ras opposed to which Bayesion inference, which Bayesion should take next gou should take next comester. Bootstrap methods are simulation methods for frequentist inference.

Bootstrap methods are useful for

- many problem types - especially when standard assumptions are invalid (like non-normal statistics)

Bootstrap principal: The bootstrap dan should approximate the sampling dan of the statistic! Remember Bootstrap methods can fail when

> We have extremes or heavy-tailed dans Can be computationally expensive (i.e. slow) need to be careful w/ dependent data.