2 Monte Carlo Methods for Hypothesis Tests

There are two aspects of hypothesis tests that we will investigate through the use of Monte Carlo methods: Type I error and Power.

Example 2.1 Assume we want to test the following hypotheses

$$egin{array}{l} H_0:\mu=5\ H_a:\mu>5 \end{array}$$

with the test statistic

$$T^* = rac{\overline{x}-5}{s/\sqrt{n}}$$

This leads to the following decision rule: Reject H₀ if $T^* > t_{(1-\alpha/2), n-1} = gt(1-\alpha/2, n-1)$.

equivalent to: Reject Ho if p-value < a. What are we assuming about X?

$$X_{1,...,X_n} \stackrel{\text{id}}{\sim} N(\mu, \sigma^2)$$
 (with big enough n
is with help from $CL\overline{I}$ $X_{1,...,X_n} \stackrel{\text{id}}{\sim} F$, unknown but
inknown.

2

2.1 Types of Errors

Decision

Type I error: Reject Ho when Ho true.

Fail to reject Ho when Ho false. Type II error:

	TRUTH	1	
	Ho true	H. False.	q = P(type I error)
Reject	Type I error	Correct decision	= P(reject Ho Ho true)
Ho	d	power = 1-B	
Fail to	Correct	Type I ecror	B = P(type II error)
Rejet	decision.	β	= P(Fail to reject Ho Ho False).
Ho			7

Usually we set $\alpha = 0.05$ or 0.10, and choose a sample size such that power = $1 - \beta \ge 0.80$.

For simple cases, we can find formulas for α and β .

For all others, we can use Monte carlo integration to estimate $\alpha \in 1-\beta$ **2.2 MC Estimator of** α $f_{\text{operation}} = \frac{1}{1}$

Assume $X_1, \ldots, X_n \sim F(\theta_0)$ (i.e., assume H_0 is true).

Then, we have the following hypothesis test –

$$egin{aligned} H_0: heta &= heta_0 \ H_a: heta &> heta_0 \end{aligned}$$

and the statistics T^* , which is a test statistic computed from data. Then we reject H_0 if $T^* >$ the critical value from the distribution of the test statistic.

This leads to the following algorithm to estimate the Type I error of the test (α)

For replicate
$$j=1,...,m$$

1. Generate $X_{1}^{(j)},...,X_{n}^{(j)} \sim F(\theta_{0})$
 $a : Lenpule T^{X(j)} = \Psi(X_{1}^{(j)},...,X_{n}^{(j)})^{d}$
 $deta$
 $deta$

Your Turn

Example 2.2 (Pearson's moment coefficient of skewness) Let $X \sim F$ where $E(X) = \mu$ and $Var(X) = \sigma^2$. Let

$$\sqrt{eta_1} = E\left[\left(rac{X-\mu}{\sigma}
ight)^3
ight].$$

Then for a

- symmetric distribution, $\sqrt{\beta_1} = 0$,
- positively skewed distribution, $\sqrt{\beta_1} > 0$, and
- negatively skewed distribution, $\sqrt{\beta_1} < 0$.

The following is an estimator for skewness

$$\sqrt{b_1} = rac{\displaystyle rac{1}{n}\sum\limits_{i=1}^n (X_i-\overline{X})^3}{\left[\displaystyle rac{1}{n}\sum\limits_{i=1}^n (X_i-\overline{X})^2
ight]^{3/2}}.$$

It can be shown by Statistical theory that if $X_1, \ldots, X_n \stackrel{\text{id}}{\sim} N(\mu, \sigma^2)$, then as $n \to \infty$

$$\sqrt{b_1} \sim N\left(0, \frac{6}{n}\right). \implies \sqrt{b_1} \sim \mathcal{N}(\mathcal{O}_1).$$

Thus we can test the following hypothesis

hesis

$$H_0: \sqrt{\beta_1} = 0$$
 $H_o: symmetric distribution$
 $H_a: not symmetric.$
 $H_a: \sqrt{\beta_1} \neq 0$

by comparing $\frac{\sqrt{b_1}}{\sqrt{\frac{6}{n}}}$ to a critical value from a $\underbrace{N(0,1)}$ distribution.

In practice, convergence of $\sqrt[b]{b_1}$ to a $N\left(0, \frac{6}{n}\right)$ is <u>slow</u>.

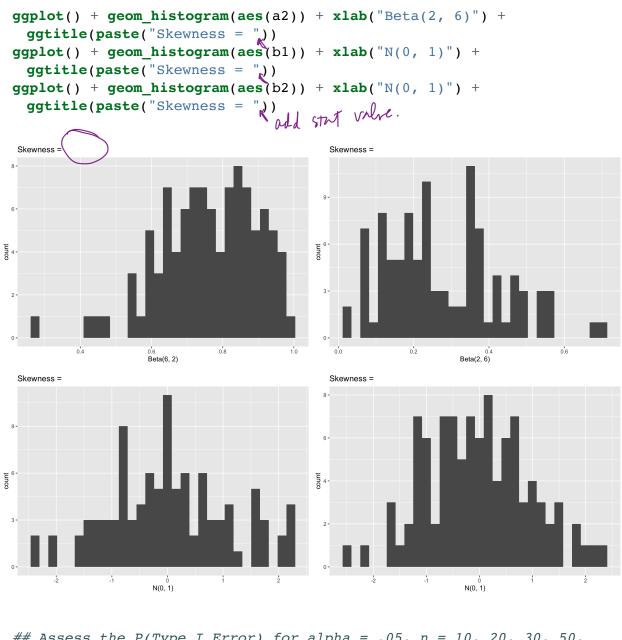
=> n needs to be very large for dist of JL, Normal.

We want to assess P(Type I error) for $\alpha = 0.05$ for n = 10, 20, 30, 50, 100, 500.

```
library(tidyverse)
 # compare a symmetric and skewed distribution
 data.frame(x = seq(0, 1, length.out = 1000)) %>%
   mutate(skewed = dbeta(x, 6, 2))
             symmetric = dbeta(x, 5, 5)) %>%
   gather(type, dsn, -x) %>%
                                                                     1 Beta (6,2).
   ggplot() +
   geom_line(aes(x, dsn, colour = type, lty = type))
                                          & Betals is)
  2 -
                                                                                  type
dsn
                                                                                       skewed
                                                                                       symmetric
  1-
  0 -

\int \overline{b_{1}} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{3}

\int \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{3} \int_{1}^{3/2}
                       0.25
      0.00
                                        0.50
                                                         0.75
                                         х
 ## write a skewness function based on a sample x
 skew <- function(x) {</pre>
     YOUR TURN
 }
 ## check skewness of some samples
 n <- 100
 a1 <- rbeta(n, 6, 2)
 a2 <- rbeta(n, 2, 6)
 ## two symmetric samples
 b1 <- rnorm(100)
 b2 <- rnorm(100)
  # fill in the she.
gplot() + geom_histogram(aes(ai),
ggtitle(paste("Skewness = ")) add in.
Skewness value
for fregamples
for fregamples
 ## fill in the skewness values
 ggplot() + geom_histogram(aes(a1)) + xlab("Beta(6, 2)") +
```



Assess the P(Type I Error) for alpha = .05,
$$n = 10, 20, 30, 50$$

100, 500
 20 VR [URN

Example 2.3 (Pearson's moment coefficient of skewness with variance correction) One way to improve performance of this statistic is to adjust the variance for small samples. It can be shown that

$$Var(\sqrt{b_1}) = rac{6(n-2)}{(n+1)(n+3)}$$

Assess the Type I error rate of a skewness test using the finite sample correction variance.