
Chapter 7: Monte Carlo Methods in Inference
Monte Carlo methods may refer to any method in statistical inference or numerical analy-
sis were simulation is used.

We have so far learned about Monte Carlo methods for estimation.

We will now look at Monte Carlo methods to estimate coverage probability for con�dence
intervals, Type I error of a test procedure, and power of a test.

In statistical inference there is uncertainty in an estimate. We will use repeated sampling
(Monte Carlo methods) from a given probability model to investigate this uncertainty.
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1 Monte Carlo Estimate of Coverage

1.1 Con�dence Intervals

Recall from your intro stats class that a  con�dence interval for  (when  is known and
) is of the form

Interpretation:

Comments:

1. 

2. 

Mathematical interpretation:

%

( I - 1.96 ÷ ) I +1.96¥) .
L U

if I repealed this study too times and computed a CI for each repetition

using the formula above
,

I expect around 95 of CI 's to include true meanµ .

( L , V ) are dented from Stat theory .

( Lsu) are statistics (computed from data )
-

If I collect new data I will get
new

( L
,
V) .

✗
Confidence
level .

Pj - 1.96% <
µ < it 1.96% ) = 0.95

⇒ PC -1.96 <
< 1.96 ) = 0.95

where by assumptions of data ghent
'm %÷ ~ µ ( 0,1) .
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i.e. f ¥ e da = o.gg
This holds when we have full data from Nlm,•?

but with real data theseassumptimsmaynotholdexad-hg-l.GG
⇒ need to estimate confidence
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De�nition 1.1 For ,  known, the  con�dence interval
for  is

where

In general,

So, if we have formulas for  and , we can use Monte Carlo integration to estimate .

An estimate of  tells us about the behavior of our estimator  in practice.

1.2 Vocabulary

We say 

%

= qnorm ( 1- %) .

let (Lib) denote a CI for parameter
0
,

then

P( Leo < D= 1- a

-

an integral! gift
From stat theory .

Efron asymptotic theory Four assumptions
about the data reasonable?

p E
true

statistic parameter
robe .

nominal (named] coverage.

empirical coverage
or empirical Confidence

level

= simulation - based estimate of the proportion of CIs that contain Q
.



4 1 Coverage

1.3 Algorithm

Let  and  is the parameter of interest.

Example 1.1

Consider a con�dence interval for , .

Then, a Monte Carlo Estimator of Coverage could be obtained with the following
algorithm.

✗ ~ Bern (p)

✗ ~N(MD
p is the parameter of interest.

M is the parameter of interest.
|

( from stat theory ) .

a) for f- 1
, . . -1m

① He X.is?..,XEnFx
② Compute Cj = [Lj , Uj] integral .

③ Yi
= #( ① c- g.) = # ( ↳ go.su;)
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b) I - I = ÷ §
,

Yi = empirical coverage .
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1.4 Motivation

Why do we want empirical and nominal coverage to match?

Example 1.2 Estimates of  are biased.

Example 1.3 Estimates of  have variance that is smaller than it should be.

Example 1.4 Estimates of  have variance that is larger than it should be.

Because it suggests our state d is accurate.

⇒ coverage will
be low . €4
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I thought this method was giving me 95% confidence ;

:
but actually it is 5% confidence . 1-
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IFA little bit high is ok
,
but if

have $0090 coverage the CI
's based on the

method probably aren't useful . ¥
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Your Turn
We want to examine empirical coverage for con�dence intervals of the mean.

1. Coverage for CI for  when  is known, .

a. Simulate . Compute the empirical coverage for a  con-
�dence interval for  using  MC samples.

b. Plot 100 con�dence intervals using geom_segment() and add a line indicat-
ing the true value for . Color your intervals by if they contain  or not.

c. Repeat the Monte Carlo estimate of coverage 100 times. Plot the distribution
of the results. This is the Monte Carlo estimate of the distribution of the
coverage.

2. Repeat part 1 but without  known. Now you will plug in an estimage for  (using
sd()) when you estimate the CI using the same formula that assumes  known.
What happens to the empirical coverage? What can we do to improve the coverage?
Now increase . What happens to coverage?

3. Repeat 2a. when the data are distributed  and variance unknown. What
happens to the coverage? What can we do to improve coverage in this case and why?
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