
Chapter 6: Monte Carlo Integration
Monte Carlo integration is a statistical method based on random sampling in order to ap-
proximate integrals. This section could alternatively be titled,

“Integrals are hard, how can we avoid doing them?”

https://xkcd.com/2117/
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1 A Tale of Two Approaches
Consider a one-dimensional integral.

The value of the integral can be derived analytically only for a few functions, . For the
rest, numerical approximations are often useful.

Why is integration important to statistics?

1.1 Numerical Integration

Idea: Approximate  via the sum of many polygons under the curve .

To do this, we could partition the interval  into  subintervals  for 
 with  and .

Within each interval, insert  nodes, so for  let  for , then

for some set of constants, .

S ftxdxin
integrand

Mary quantities of interest in inferential statistics can be expressed as tire expectation of

a function of a random variable . E[g(XD = SEx?¥÷dx
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1.2 Monte Carlo Integration

How do we compute the mean of a distribution?

Example 1.1 Let  and .

Theory

x <- seq(0, 1, length.out = 1000)
f <- function(x, a, b) 1/(b - a)
ggplot() + 
  geom_line(aes(x, f(x, 0, 1))) +
  ylim(c(0, 1.5)) +
  ggtitle("Uniform(0, 1)")

y <- seq(10, 20, length.out = 1000)
ggplot() + 
  geom_line(aes(y, f(y, 10, 20))) +
  ylim(c(0, 1.5)) +
  ggtitle("Uniform(10, 20)")
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E(X)=⇐Gada EG) = {oyftydy
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How about some •to dsn ?

probably can't
do this is closed

? ?
form ⇒ need approximation .
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1.2.1 Notation

Distribution of 

1.2.2 Monte Carlo Simulation

What is Monte Carlo simulation?

=

parameter (unknown)

= estimator of 0
,
statistic ( sometime we write I

,
5 Instead of § ) .

= sampling distribution

= theoretical mean of the distribution
of É

on average , whatis
valve of É?

= theoretical variance of te distribution of É

of the sampling dsn of É.

= estimated mean of dsn of É

e**µ
versions

= estimated variance of dsn of
É

= ÑÉ theoretical variance of É = sd of sampling
dsn of É

=ÑÉ estimated S.E. of É

Computer simulation that generates a large number of samples from a distributor.

The distribution characterizes the population from
which the sample is drawn.

( sounds a
like ch . 3) .
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1.2.3 Monte Carlo Integration

To approximate , we can obtain an iid random sample 
from  and then approximate  via the sample average

Example 1.2 Again, let  and . To estimate  and 
 using a Monte Carlo approach,

Now consider .

The Monte Carlo approximation of  could then be obtained by

1. 

2. 

parameter→ ①
characterizing •

population
thing

we

are
about ! ④ = In a EX

i=,

☒ Unit CQD
,
estimate EX :

µ
You Unit (10/20) , estimate EY :

① drawing Y, , → You ÉdUnF(10,20)① drawing X
, ,→
Xminiduniflq ,)

② company É
= In ,É

,

Yi② compute G- = '-miÉXi

This is useful when we can't compute
C-✗ 1h closed form.

Also useful to approximate other integrals . . .

Draw ✗ i. → Xmvf

Compute G- = 1m¥ gcxi ) .
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De�nition 1.1 Monte Carlo integration is the statistical estimation of the value of an inte-
gral using evaluations of an integrand at a set of points drawn randomly from a distirbu-
tion with support over the range of integration.

Example 1.3

Why the mean?

Let , then

and, by the strong law of large numbers,

Example 1.4 Let , where , and assume  has �nite ex-
pectation under . Then

We can estimate this using a Monte Carlo approach.

-

④ parameter estimation :
linear model : f- ✗pts

E~N(0,67 ⇒ Ñ = CXTXJ
'

xty closed form.

GLM : Y~ Binomlpl
logit(p) = ftp.X no estimate for f. ,p, in closed form .

⑤ estimate quartiles of a dsn , e. g. Find Y sit
. f- (x)dz= 0.9

m times

m
-

E[É]=E[miÉg(xiif-tm.EEIglxii-m-f.at . . -+0-3=0

So § is unbiased.

8=1 ,Égcxi)→PE[gCxD=o
" consistency

"

want Ñarlgcxl) = E- [4×1]
.

① Sample Xn . .,Xm~f
can replace with

② ↳route h- §
,

( gag, - g§
" d" 't how this !

f- = '-mÉ,gHi .



1.2 Monte Carlo Integration 7

E-- tmÉix×i
If var gl*) <✗ ⇒ CLT states

8- - [ (g)
" 0

→
d
N 10,1 ) as m→•.

↳ varloil-varm-E.GG/iD--km&..Varglxi1--tmVargCX7.

Hence if m is large
Ufer gcx) plugin from above

.

&iN(qvarmg⇒
" use

we can use this to put confidence limits or error Sounds on the

MC estimate of the integral §
.
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Monte Carlo integration provides slow convergence, i.e. even though by the SLLN we
know we have convergence, it may take us a while to get there.

But, Monte Carlo integration is a very powerful tool. While numerical integration methods
are dif�cult to extend to multiple dimensions and work best with a smooth integrand,
Monte Carlo does not suffer these weaknesses.

1.2.4 Algorithm

The approach to �nding a Monte Carlo estimator for  is as follows.

1. 

2. 

3. 

4. 

Example 1.5 Estimate .

-

Numeric integration

MC does not attempt systematic exploration of
the
p
-dimensional supportoff.

cannot say
+" "e " {

MC does not require integrand to be smooth
,
does not require finitespp .

✗
Shtxdx = -0

Select g , f
to define 0 as an expected value .

Before
R { ← xnf •

Derive the estimators.t. É approximates Q=E[gcx)] = S gtxftxdx .

- a

sample Xn - . ,Xm~f

in R
. { Complete Ñ=tmÉg( Xi) .

① let 5- be the uniform co
,
1)

.

Find
8 "t . f- of =h . ⇒ let gGa= has .

Unit 1917

f density

② Then D- = fjhlxdx = Sjglx) • 1- dx = Efg ✗~ Unit CQD .

③ Sample Xi
, -
-,Xm from Unit 10,1) .

> ✗ ← runiffm) .

⑨ Compute É = In glx ;) .

> mean (god)
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Example 1.6 Estimate .

Another approach:

8
① choose f=_ Unit (a.b). so fan = { ¥

at ✗ c- b

O O
, w.

Then glx)= (b-a) hlx ) b

② So that Q = fabhlxldx = Sab (b-a) hl>c) • ¥a dx = Sa gcx) . fix> dx = E [91×7]×4

③ Sample X, ,
- , ✗n n Uniflqb) > ✗ ← runiflm, a. b) .

④ Compute É=tmÉ( b-a) • hlx;) > (b-a) • mean (h(xD .

change of
variable approach

'

(as ) maps to co
, 1) .

What if I chose You Unifco, D.instead ? Then fg.ly/-- {
" " Y ' '

① Oc W .

But we care about Elglx)) = Sba gta) ftxdx.

We want to integrate from (a. b) but support of dsn is 10,1). So we need a

chyiabe
to use Mc integration .

we need a function to map
✗ c- (ai) to YECQD .

We will use a ¥Eon .

Y÷=Y-°- ⇒ I÷=y .

•

solve for x ( ✗→ y) .

✗ = at ycb-a)

dx =(b-a)dy.-
-

⑨
Now 0 =

gcxlfcxldx = f g(a#b-aI)fyly) (b-a) dy .-

⑧ -wt
c- [ JIM

,

You Unit loin .

To get É, Ty (g) = glatycb-aD.us-a).

④ Simulate Y, , - . ,Ym from Unifco, 1).

② É = ÷iÉ{gCa + %1b-apib-o.is

we can use this if the limits of integration don't match any named density.
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Example 1.7 Monte Carlo integration for the standard Normal cdf. Let , then
the pdf of  is

and the cdf of  is

We will look at 3 methods to estimate  for .

-

path , ¢1M
11

-

' why? because now

units of integration are

co
,
x).

0
-

28

Methodic : Note that for x > 0 ☒⇒ = f ¢*x + So ¥☐ exec- E) dt
✓

change of = Yz
variables

approach.

Support of Y~llniflqn.is
Co < yen .

So want function that maps
tt Cox) to

YE 10,17 .

I

y% = ¥-0 linear transformation !

so if t=o⇒ylet y
= ÷
,

t=x⇒y=r✓
1.

⇒ t=xy It
-

- xdy

then [÷e×pt¥1dt=fÉÉ¥dy
⑧

⇒ Want to estimate d- = Ey [¥ exp (-
"¥

"

) .x] where you Unifco,
D
.

So a MC estimate could be obtained by :

fixed number.

① Sample Y
, , -

-

,
Ym ~ Uniflora , y

② Éolx) -- of + ÉE{E. exp C- "÷)•x} to no.

Meth°d2 Could instead have chosen to Y~ Unit (0.x)

Homework .
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Method 3

FI be an indicator function .

I( 2- a-⇒ = { 1 if 2- ez

O o -

w
.

let 2- ~ NCO, D.

Then

x

Iota -- Soundt-JI-t-Y.EE#t
-

- j - ✗

FIX⇐*
So a Mc estimator of Ilk) is

① Generate Z, ,
- .,Zm

~ NCO , 1)

② ÉG4 = In?ÉI(Ziµ+q # Zi 's ± &

Notes :

① We can show that Method 3 has less bias in tails
.

and Method 2

has less bias in the center.

② Method 3 works for any dsn to approximate Cdf ( charge f accordingly) .
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1.2.5 Inference for MC Estimators

The Central Limit Theorem implies

So, we can construct con�dence intervals for our estimator

1. 

2. 

But we need to estimate .

MC estimator

¥j÷¥- →
•

Man .

as m→✗

→

plugin
are
't"
't"

se 10^1
.

68 (unbiased)

95% CI for ECE) : 8+-1.96É •
°"

Y
'-

qnorm
C. 9757

.

(aw) 95% CI for ☒(2) : ÉC2) I 1.96ÉIÉ
.c-

G-

recall Assume 0=[-41×7] = [gcxlfcxldx-

ut 62 = Var [ g(xD .

←
we can estimate

this w/MC
integration.

then bar [ E) = var [ ±iÉgcxiD=÷÷? varcgcx .D=

i.w.fi.ci
so
,

Vir [07 = •÷='ñ[mÉ[⑨ Hit - EM = I. Elsa ;)-£5and
-
in

1- Égm
a Mc estimator of variance of sampling dsn of É

I

Recall that we usually use S2 = É É Cxi -57 to estimate is ?

in

why not uses S2 if ÷, instead of £24 In
?

For MC integration , m is large so ± ,
I ÷

EI : if m- iooo ,
¥ - In = 1×10-6

some books use £
,

so
Vir (E) = m¥É fgcx;) - E)

2

-
in
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So, if  then . How much does changing  matter?

Example 1.8 If the current  based on  samples, how many more samples do

we need to get ?

Is there a better way to decrease the variance? Yes!

If

current se(E) =# =
•
01

M¥ =
•

000W
find a ?

E- • ta = ( 000172

f. 01)? ta = f. 000172

(÷Ñ=a
= 10,000

We would need 10,000 ✗ m samples to achieve
se (E) = •

0001 !


