Chapter 6: Monte Carlo Integration

Monte Carlo integration is a statistical method based on random sampling in order to approximate integrals. This section could alternatively be titled,

"Integrals are hard, how can we avoid doing them?"

https://xked.com/2117/

1 A Tale of Two Approaches

Consider a one-dimensional integral.

The value of the integral can be derived analytically only for a few functions, f. For the rest, numerical approximations are often useful.

Why is integration important to statistics?

Many quantities of indicest in inferential statistics can be expressed as the expectation of a function of a random variable, $E[g(X)] = \int g(x)f(x) dx$

1.1 Numerical Integration

Idea: Approximate $\int_a^b f(x) dx$ via the sum of many polygons under the curve f(x).

To do this, we could partition the interval [a, b] into m subintervals $[x_i, x_{i+1}]$ for $i=0,\ldots,m-1$ with $x_0=a$ and $x_m=b$.

Within each interval, insert k+1 nodes, so for $[x_i, x_{i+1}]$ let x_{ij}^* for $j=0,\ldots,k,$ then

$$\int\limits_a^b f(x)dx = \sum\limits_{i=0}^{m-1} \int\limits_{x_i}^{x_{i+1}} f(x)dx pprox \sum\limits_{i=0}^{m-1} \sum\limits_{j=0}^k A_{ij}f(x_{ij}^*)$$

1.2 Monte Carlo Integration

How do we compute the mean of a distribution?

Example 1.1 Let $X \sim Unif(0, 1)$ and $Y \sim Unif(10, 20)$.

```
x <- seq(0, 1, length.out = 1000)
f <- function(x, a, b) 1/(b - a)
ggplot() +
  geom_line(aes(x, f(x, 0, 1))) +
  ylim(c(0, 1.5)) +
  ggtitle("Uniform(0, 1)")

y <- seq(10, 20, length.out = 1000)
ggplot() +
  geom_line(aes(y, f(y, 10, 20))) +
  ylim(c(0, 1.5)) +
  ggtitle("Uniform(10, 20)")</pre>
```


Theory

$$E(\chi) = \int_{0}^{1} x f(\chi) d\chi$$
$$= \int_{0}^{1} x \cdot 1 d\chi$$
$$= \frac{\chi^{2}}{z} \Big|_{0}^{1} = \frac{1}{z}$$

$$E(Y) = \int_{10}^{20} \eta f(\eta) d\eta$$

= $\int_{10}^{20} \eta \frac{1}{10} d\eta$
= $\frac{1}{10} \left[\frac{\eta^2}{2} \right]_{10}^{20} = 15.$

probably con't do this is closed form -> need approximation.

1.2.1 Notation

$$\theta \stackrel{\sim}{=} parameter (ubnown)$$

$$\hat{\theta} = estimater of \theta, statistic (somethie we water $\bar{\chi}_{1} S^{2}$ Instead of $\hat{\theta}$).
Distribution of $\hat{\theta} = Scongling distribution$

$$E[\hat{\theta}] = Heavetical mean of the distribution $\hat{\theta}$

$$Sh akespe, theto value of \hat{\theta}^{2}$$

$$Var(\hat{\theta}) = heavetical variance of the distribution of \hat{\theta}$$

$$estimated \rightarrow E[\hat{\theta}] = estimated mean of din of \hat{\theta}$$

$$se(\hat{\theta}) = \sqrt{Var(\hat{\theta})} \quad heavetical variance of din of \hat{\theta} = Scongling distribution of \hat{\theta}$$

$$estimated = \sqrt{Var(\hat{\theta})} \quad heavetical variance of din of \hat{\theta}$$

$$se(\hat{\theta}) = \sqrt{Var(\hat{\theta})} \quad heavetical variance of \hat{\theta} = Scongling distribution \hat{\theta}$$$$$$

1.2.2 Monte Carlo Simulation

Computer simulation that generates a large number of samples from a distribution. The distribution characterizes the population from which the sample is drawn. What is Monte Carlo simulation?

(Sands a like ch. 3).

Versions

1.2.3 Monte Carlo Integration

parameter characterizing population Thing we core about !

To approximate $\theta = E[X] = \int xf(x)dx$, we can obtain an iid random sample X_1, \ldots, X_m from f and then approximate θ via the sample average

$$\hat{\theta} = \frac{1}{m} \sum_{i=1}^{m} X_i \approx E X$$

Example 1.2 Again, let $X \sim Unif(0, 1)$ and $Y \sim Unif(10, 20)$. To estimate E[X] and E[Y] using a Monte Carlo approach,

This is useful when we can 't compute EX in closed form. Also useful to approximate other integrals... Now consider E[g(X)].

$$heta=E[g(X)]=\int\limits_{-\infty}^{\infty}g(x)f(x)dx.$$

The Monte Carlo approximation of θ could then be obtained by

2. Compute
$$\hat{\Theta} = \frac{1}{m} \sum_{i=1}^{M} q(X_i),$$

Definition 1.1 *Monte Carlo integration* is the statistical estimation of the value of an integral using evaluations of an integrand at a set of points drawn randomly from a distirbution with support over the range of integration.

Example 1.3

(A) parameter estimation:
linear model:
$$Y = \chi \beta + \mathcal{E}$$
 $\mathcal{E} \sim N(0, 6^2) \implies \hat{\beta} = (\chi \tau \chi)^{-1} \chi \tau \chi$ doeed form.
6. LM: $Y \sim Binom(\beta)$
 $logit(\beta) = \beta_0 + \beta, \chi$ no estimate for β_0, β_1 inclosed form.
(B) estimate quantiles of a dsn, e.g. Find \mathcal{Y} s.t. $\int_{-\infty}^{\mathcal{H}} f(x) dx = 0.7$
Why the mean?
Let $E[a(\chi)] = \theta$, then m three

and, by the strong law of large numbers,

$$\hat{\theta} = \frac{1}{m} \sum_{i=1}^{m} g(X_i) \longrightarrow E[g(X)] = 0$$

"I consistency"

Example 1.4 Let $v(x) = (g(x) - \theta)^2$, where $\theta = E[g(X)]$, and assume $g(X)^2$ has finite expectation under f. Then

$$Var(g(X))=E[(g(X)- heta)^2]=E[v(X)].$$

We can estimate this using a Monte Carlo approach.

Wont
$$\operatorname{Vor}(g(x)) = \widehat{E}[v(x)].$$

() Sample $X_{1,\dots,} X_m \sim f$
(2) Compute $\frac{1}{m} \sum_{i=1}^{\infty} (g(x_i) - b)^2$ $\widehat{\theta} = \frac{1}{m} \sum_{i=1}^{\infty} g(x_i).$

We can use this to put confidence limits or error bounds on the MC estimate of the integral $\hat{\theta}$,

Monte Carlo integration provides slow convergence, i.e. even though by the SLLN we know we have convergence, it may take us a while to get there.

But, Monte Carlo integration is a **very** powerful tool. While numerical integration methods are difficult to extend to multiple dimensions and work best with a smooth integrand, Monte Carlo does not suffer these weaknesses.

•

1.2.4 Algorithm

The approach to finding a Monte Carlo estimator for $\int g(x)f(x)dx$ is as follows.

1.

2.

3.

4.

Example 1.5 Estimate $\theta = \int_0^1 h(x) dx$.

Example 1.6 Estimate $\theta = \int_a^b h(x) dx$.

Another approach:

Example 1.7 Monte Carlo integration for the standard Normal cdf. Let $X \sim N(0, 1)$, then the pdf of X is

$$\phi(x) = f(x) = rac{1}{\sqrt{2\pi}} \mathrm{exp}igg(-rac{x^2}{2}igg), \qquad -\infty < x < \infty$$

and the cdf of X is

$$\Phi(x)=F(x)=\int\limits_{\infty}^{x}rac{1}{\sqrt{2\pi}} ext{exp}igg(-rac{t^{2}}{2}igg)dt.$$

We will look at 3 methods to estimate $\Phi(x)$ for x > 0.

1.2 Monte Carlo Integration

1.2.5 Inference for MC Estimators

The Central Limit Theorem implies

So, we can construct confidence intervals for our estimator

1.

2.

But we need to estimate $Var(\hat{\theta})$.

So, if $m \uparrow \text{then } Var(\hat{\theta}) \downarrow$. How much does changing *m* matter?

Example 1.8 If the current $se(\hat{\theta}) = 0.01$ based on *m* samples, how many more samples do we need to get $se(\hat{\theta}) = 0.0001$?

Is there a better way to decrease the variance? Yes!