
Chapter 6: Monte Carlo Integration
Monte Carlo integration is a statistical method based on random sampling in order to ap-
proximate integrals. This section could alternatively be titled,

“Integrals are hard, how can we avoid doing them?”

https://xkcd.com/2117/
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1 A Tale of Two Approaches
Consider a one-dimensional integral.

The value of the integral can be derived analytically only for a few functions, . For the
rest, numerical approximations are often useful.

Why is integration important to statistics?

1.1 Numerical Integration

Idea: Approximate  via the sum of many polygons under the curve .

To do this, we could partition the interval  into  subintervals  for 
 with  and .

Within each interval, insert  nodes, so for  let  for , then

for some set of constants, .

S ftxdxin
integrand

Mary quantities of interest in inferential statistics can be expressed as tire expectation of

a function of a random variable . E[g(XD = SEx?¥÷dx
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1.2 Monte Carlo Integration

How do we compute the mean of a distribution?

Example 1.1 Let  and .

Theory

x <- seq(0, 1, length.out = 1000)
f <- function(x, a, b) 1/(b - a)
ggplot() + 
  geom_line(aes(x, f(x, 0, 1))) +
  ylim(c(0, 1.5)) +
  ggtitle("Uniform(0, 1)")

y <- seq(10, 20, length.out = 1000)
ggplot() + 
  geom_line(aes(y, f(y, 10, 20))) +
  ylim(c(0, 1.5)) +
  ggtitle("Uniform(10, 20)")
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How about some •to dsn ?

probably can't
do this is closed

? ?
form ⇒ need approximation .
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1.2.1 Notation

Distribution of 

1.2.2 Monte Carlo Simulation

What is Monte Carlo simulation?

=

parameter (unknown)

= estimator of 0
,
statistic ( sometime we write I

,
5 Instead of § ) .

= sampling distribution

= theoretical mean of the distribution
of É

on average , whatis
valve of É?

= theoretical variance of te distribution of É

of the sampling dsn of É.

= estimated mean of dsn of É

e**µ
versions

= estimated variance of dsn of
É

= ÑÉ theoretical variance of É = sd of sampling
dsn of É

=ÑÉ estimated S.E. of É

Computer simulation that generates a large number of samples from a distributor.

The distribution characterizes the population from
which the sample is drawn.

( sounds a
like ch . 3) .
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1.2.3 Monte Carlo Integration

To approximate , we can obtain an iid random sample 
from  and then approximate  via the sample average

Example 1.2 Again, let  and . To estimate  and 
 using a Monte Carlo approach,

Now consider .

The Monte Carlo approximation of  could then be obtained by

1. 

2. 

parameter→ ①
characterizing •

population
thing

we

are
about ! ④ = In a EX

i=,

☒ Unit CQD
,
estimate EX :

µ
You Unit (10/20) , estimate EY :

① drawing Y, , → You ÉdUnF(10,20)① drawing X
, ,→
Xminiduniflq ,)

② company É
= In ,É

,

Yi② compute G- = '-miÉXi

This is useful when we can't compute
C-✗ 1h closed form.

Also useful to approximate other integrals . . .

Draw ✗ i. → Xmvf

Compute G- = 1m¥ gcxi ) .
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De�nition 1.1 Monte Carlo integration is the statistical estimation of the value of an inte-
gral using evaluations of an integrand at a set of points drawn randomly from a distirbu-
tion with support over the range of integration.

Example 1.3

Why the mean?

Let , then

and, by the strong law of large numbers,

Example 1.4 Let , where , and assume  has �nite ex-
pectation under . Then

We can estimate this using a Monte Carlo approach.

-

④ parameter estimation :
linear model : f- ✗pts

E~N(0,67 ⇒ Ñ = CXTXJ
'

xty closed form.

GLM : Y~ Binomlpl
logit(p) = ftp.X no estimate for f. ,p, in closed form .

⑤ estimate quartiles of a dsn , e. g. Find Y sit
. f- (x)dz= 0.9

m times

m
-

E[É]=E[miÉg(xiif-tm.EEIglxii-m-f.at . . -+0-3=0

So § is unbiased.

8=1 ,Égcxi)→PE[gCxD=o
" consistency

"

want Ñarlgcxl) = E- [4×1]
.

① Sample Xn . .,Xm~f
can replace with

② ↳route h- §
,

( gag, - g§
" d" 't how this !

f- = '-mÉ,gHi .
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E-- tmÉix×i
If var gl*) <✗ ⇒ CLT states

8- - [ (g)
" 0

→
d
N 10,1 ) as m→•.

↳ varloil-varm-E.GG/iD--km&..Varglxi1--tmVargCX7.

Hence if m is large
Ufer gcx) plugin from above

.

&iN(qvarmg⇒
" use

we can use this to put confidence limits or error Sounds on the

MC estimate of the integral §
.
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Monte Carlo integration provides slow convergence, i.e. even though by the SLLN we
know we have convergence, it may take us a while to get there.

But, Monte Carlo integration is a very powerful tool. While numerical integration methods
are dif�cult to extend to multiple dimensions and work best with a smooth integrand,
Monte Carlo does not suffer these weaknesses.

1.2.4 Algorithm

The approach to �nding a Monte Carlo estimator for  is as follows.

1. 

2. 

3. 

4. 

Example 1.5 Estimate .
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Example 1.6 Estimate .

Another approach:
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Example 1.7 Monte Carlo integration for the standard Normal cdf. Let , then
the pdf of  is

and the cdf of  is

We will look at 3 methods to estimate  for .
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1.2.5 Inference for MC Estimators

The Central Limit Theorem implies

So, we can construct con�dence intervals for our estimator

1. 

2. 

But we need to estimate .
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So, if  then . How much does changing  matter?

Example 1.8 If the current  based on  samples, how many more samples do

we need to get ?

Is there a better way to decrease the variance? Yes!


