
Chapter 3: Methods for Simulating Data
Statisticians (and other users of data) need to simulate data for many reasons.

For example, I simulate as a way to check whether a model is appropriate. If the observed
data are similar to the data I generated, then this is one way to show my model may be a
good one.

It is also sometimes useful to simulate data from a distribution when I need to estimate an
expected value (approximate an integral).

R can already generate data from many (named) distributions:

##  [1] -1.0365488  0.6152833  1.4729326 -0.6826873 -0.6018386 -1.3526097 
##  [7]  0.8607387  0.7203705  0.1078532 -0.5745512

##  [1] -4.5092359  0.4464354 -7.9689786 -0.4342956 -5.8546081  2.7596877 
##  [7] -3.2762745 -2.1184014  2.8218477 -5.0927654

##  [1] 0.67720831 0.04377997 5.38745038 0.48773005 1.18690322 0.92734297 
##  [7] 0.33936255 0.99803323 0.27831305 0.94257810

But what about when we don’t have a function to do it?

set.seed(400) #reproducibility

rnorm(10) # 10 observations of a N(0,1) r.v.

rnorm(10, 0, 5) # 10 observations of a N(0,5^2) r.v.

rexp(10) # 10 observations from an Exp(1) r.v.

- oh
,
5

#
set the seed so

that we can reproduce our oeshlts later . . .

↳ we need to write our own functions to simulate data from •tier

distributions.
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1 Inverse Transform Method
Theorem 1.1 (Probability Integral Transform) If  is a continuous r.v. with cdf , then 

.

This leads to to the following method for simulating data.

Inverse Transform Method:

First, generate  from Uniform . Then,  is a realization from .

Note: 

1.1 Algorithm

1. Derive the inverse function . 

2. Write a function to compute . 

3. For each realization,

a. 

b. 

fix a
a-

HE

f-
"

may
not be available in closed form ! If that's the case

,
use something else . . .

on paper To do this
, let f-(x) = u

,
solve for ✗

to find ✗ = F-
'

(n)
.

in R

simulated value
u

generate a random valuer from Uniflo
, ,)

Coyote x= F-
'

(n) .
-
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Example 1.1 Simulate a random sample of size  from the pdf .

1. 

2. 

3. 

1.2 Discrete RVs

If  is a discrete random variable and  are the points of discontinuity
of , then the inverse transform is  where . This
leads to the following algorithm:

1. Generate a r.v.  from Unif .

2. Select  where .

# write code for inverse transform example
# f_X(x) = 3x^2, 0 <= x \<= 1

-

find the cdf F
X 0 for 3C

<0

Flag = )o3y2dy =

y
' /? =# for action]

t for x > I

- •

Find F

for sitcom u = f- Gc) = >is ⇒ U% =x = F-
'

(a)
,

so F-↳ =uY3 of use

① Write function for f-
'

② sample u from Uniffooi)

③ evaluate ✗ = F-
"

(a)
.

-

→ inverse function won't be so straightforward -

cdf <⇒÷÷.×
-

Fx a
• -

F

;
' floc ,

)<u*<_ FGs)
ft"" i ⇒ pick xz

still !

r-ix.ru#ixi
⇒ xa1

I 1

! !0-10
2CXi ✗ 2 X

}
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Example 1.2 Generate 1000 samples from the following discrete distribution.

x 1.0 2.0 3.0
f 0.1 0.2 0.7

x <- 1:3
p <- c(0.1, 0.2, 0.7)

# write code to sample from discrete dsn
n <- 1000

pmf
=

There is a simpler way to do this using the sampley function

* Remember to
allow replacement and specify the probability vector

*
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2 Acceptance-Reject Method
The goal is to generate realizations from a target density, .

Most cdfs cannot be inverted in closed form.

The Acceptance-Reject (or “Accept-Reject”) samples from a distribution that is similar to 
 and then adjusts by only accepting a certain proportion of those samples.

The method is outlined below:

Let  denote another density from which we know how to sample and we can easily calcu-
late .

Let  denote an envelope, having the property  for all 
 for a given constant .

The Accept-Reject method then follows by sampling  and .

If , accept . Set  and consider  to be an element of the target
random sample.

Note:  is the expected proportion of candidates that are accepted.

2.1 Algorithm

1. Find a suitable density  and envelope .

2. Sample .

3. Sample .

4. If , accept .

5. Repeat from Step 2 until you have generated your desired sample size.

something we can try

f if we can't find F-
"

analytically

-

@
density we want to

sample from .

- x=E
-

-

I
target

and rejecting the rest
.

requirements

①< for g.

← envelope covers all of f.

support of X
-t

- support of g
must include the supportof

5- !

Question :

Whitenight
& be hard/slow

We can use this to evaluate the efficiency of our algorithm .

about accept-

reject?

- If < is big
⇒ low efficiency

[
find constant 0 Gt .

cghdzfl.MY x Et.
⇒ rejecting alot

sample a lot
more from g.
- Need to pick

g and find c.

-

* Requirement :
thie support •f g must include the support off#

(BAD) Example : If 5- INION and g-= Unit
C- 10,107.

This is Not an appropriate choice of g. because supportoff is IR.
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2.2 Envelopes

Good envelopes have the following properties:

A simple approach to �nding the envelope:

÷

*

"""
"

^^" ⑧ Envelope must exceed target everywhere
← support of g must

include support off.

nice

② Easy to sample from g.

nicer ③ Generate few rejected draws (sure the) .

in some

f
cases
ay support of f is 01K£ I

^

support
matchesFind maxcftx) and c = maxlfcxl)

✗ c- [913
. Xt lo

,, gGD""
" ¥¥¥"¥;÷⇒=""""t !

let glxl - Unit 6,1) = {
• it a- G. D

O o
-w .

This is often not
efficient if we know

more about shape of f- we can

* This is only relevant if ☒ = [oil] .
maybe alert a better envelope

plotting is our friend here
.
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Example 2.1 We want to generate a random variable with pdf , 
. This is a Beta  distribution.

Can we invert  analytically?

If not, �nd the maximum of .

# pdf function, could use dbeta() instead
f <- function(x) {
    60*x^3*(1-x)^2
}

# plot pdf
x <- seq(0, 1, length.out = 100)
ggplot() +
  geom_line(aes(x, f(x)))

e-
- could just use rbetal ) in R.

at g±UnifC°i
? No

.

( =

find
0

5-
'

1×7=6013×41-act +2×311 -x) . -1] ftp.fH
" °

=

60241-⇒ [ 3 G-x) - 2x] I
= 60×41 -x) (3- 5.x) = 0 solve -

. . .
at 2--0,2--1,X=$

⇒ c. = Max fix)=f(%) = 2.0736 .

✗ Eco,D

""

.

314
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envelope <- function(x) {
  ## create the envelope function
}

# Accept reject algorithm
n <- 1000 # number of samples wanted
accepted <- 0 # number of accepted samples
samples <- rep(NA, n) # store the samples here

while(accepted < n) {
  # sample y from g
  
  # sample u from uniform(0,1)
  u <- runif(1)
  
  if(u < f(y)/envelope(y)) {
    # accept
    accepted <- accepted + 1
    samples[accepted] <- y
  }
}

ggplot() +
  geom_histogram(aes(sample, y = ..density..), bins = 50, ) +
  geom_line(aes(x, f(x)), colour = "red") +
  xlab("x") + ylab("f(x)")

C • glad
= C. • I • 1- [ o , if

"
'

= 5- ( %) • 1- [oil
""

while we don't have enough samples , keep running the loop .

← Unit CO
,
1)

,

y← run if CD .

←
increment accepted so loop ends eventually

← store sample C
"

accept
" it)

.

""Fort
*
we

histogram
to

be swaesdeiitr
soll

Ifleortiod
pot . ↳ $@
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2.3 Why does this work?

Recall that we require

Thus,

The larger the ratio , the more the random variable  looks like a random variable
distributed with pdf  and the more likely  is to be accepted.

2.4 Additional Resources

See p.g. 69-70 of Rizzo for a proof of the validity of the method.

eloy)=
lots of room

for u

fly)
←

⇒
± . ÷É.

÷÷ ÷::
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3 Transformation Methods
We have already used one transformation method – Inverse transform method – but there
are many other transformations we can apply to random variables.

1. If , then 

2. If  and  are independent, then 

3. If  and  are independendent, then 

4. If  and  are independent, then 

De�nition 3.1 A transformation is any function of one or more random variables.

Sometimes we want to transform random variables if observed data don’t �t a model that
might otherwise be appropriate. Sometimes we want to perform inference about a new
statistic.

Example 3.1 If . What is the distribution of ?

Example 3.2 If , what is the distribution of ?

Example 3.3 For  iid random variables, what is the distribution of the median
of ? What is the distribution of the order statistics? ?

There are many approaches to deriving the pdf of a transformed variable.

×:

Fun

ten

- -

Beta ( r
,
s)

.

✗
transformation

gut

-

c- ←
✗i=§ up. P

O O - Wi

n

can derive E.Yin Binion (nip ) .

Can derive ✗+5 NN (5
,
1).

This one is more complex . . . but we can desire .

-

change of variable
- moment generating functions

Mxct)=E(et✗)if y monotone, then for cts ✗ and Y=glH,

fy (g) = { 5×1511711%81711 YEY - convolution theorem
defraud . 0 Oaw .

2- = ✗+ Y
,

etc .



3.1 Algorithm 11

But the theory isn’t always available. What can we do?

3.1 Algorithm

Let  be a set of independent random variables with pdfs , respec-

tively, and let  be some transformation we are interested in simulating from.

1. Simulate .

2. Compute . This is one draw from .

3. Repeat Steps 1-2 many times to simulate from the target distribution.

Example 3.4 It is possible to show for , . Imag-

ine that we cannot use the rchisq function. How would you simulate ?

library(tidyverse)

# function for squared r.v.s
squares <- function(x) x^2

sample_z <- function(n, p) {
  # store the samples
  samples <- data.frame(matrix(rnorm(n*p), nrow = n))

  samples %>% 
    mutate_all("squares") %>% # square the rvs
    rowSums() # sum over rows
}

# get samples
n <- 1000 # number of samples

# apply our function over different degrees of freedom
samples <- data.frame(chisq_2 = sample_z(n, 2),
                      chisq_5 = sample_z(n, 5),
                      chisq_10 = sample_z(n, 10),

Use computational statistical
methods to simulate from transformed
dsns.

could be named dsnsc straightforward,
inverse Ldf

, accept- reject.

gy
degrees

of controls
freedomshape -

1. simulate ✗ , ,
.
.

, Xp
ÉdN loin

.

alternatively ;

Xi , - - , xp
ÉdNlo,6:)

2
. Compute Exi
3. repeat 1-2 . interested in ÉXF ~ ?

in

sample
site

y
gy

sample
of "

^

f f
# his

µ
pr.v.is#tiM

"

q

df
.
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                      chisq_100 = sample_z(n, 100))

# plot results
samples %>%
  gather(distribution, sample, everything()) %>% # make easier to 
plot w/ facets

  separate(distribution, into = c("dsn_name", "df")) %>% # get the df
  mutate(df = as.numeric(df)) %>% # make numeric
  mutate(pdf = dchisq(sample, df)) %>% # add density function values 
  ggplot() + # plot
  geom_histogram(aes(sample, y = ..density..)) + # samples
  geom_line(aes(sample, pdf), colour = "red") + # true pdf
  facet_wrap(~df, scales = "free")
e-

xitxi Xin

.tl/5Xi4-.--tXiion%a0npTes
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4 Mixture Distributions

The faithful dataset in R contains data on eruptions of Old Faithful (Geyser in Yellow-

stone National Park).

##   eruptions waiting 
## 1     3.600      79 
## 2     1.800      54 
## 3     3.333      74 
## 4     2.283      62 
## 5     4.533      85 
## 6     2.883      55

What is the shape of these distributions?

head(faithful)

faithful %>%
  gather(variable, value) %>%
  ggplot() +
  geom_histogram(aes(value), bins = 50) +
  facet_wrap(~variable, scales = "free")

^^^^
Bimodal , ie .

2 Modes



14 4 Mixture Distributions

De�nition 4.1 A random variable  is a discrete mixture if the distribution of  is a
weighted sum  for some sequence of random variables  and 

 such that .

For  r.v.s,

Cdt --

→ same holds for pdfs .

5- (a) = O-fx.ba + 4-a)%)

✓
two different densities

!

How can we simulate from this distribution ?

There are two sources of variability .

y
with prob 0

You Bernoulli (a) →
if 4=1 , then

✗~f×
,

Gc)

if 4=0
,
then X~fx.tn .

Tirith prob (1-0-7.
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Example 4.1

4.1 Mixtures vs. Sums

Note that mixture distributions are not the same as the distribution of a sum of r.v.s.

x <- seq(-5, 25, length.out = 100)

mixture <- function(x, means, sd) {
  # x is the vector of points to evaluate the function at
  # means is a vector, sd is a single number
  f <- rep(0, length(x))
  for(mean in means) { 
    f <- f + dnorm(x, mean, sd)/length(means) # why do I divide?
  }
  f
}

# look at mixtures of N(mu, 4) for different values of mu
data.frame(x, 
           f1 = mixture(x, c(5, 10, 15), 2), 
           f2 = mixture(x, c(5, 6, 7), 2),
           f3 = mixture(x, c(5, 10, 20), 2),
           f4 = mixture(x, c(1, 10, 20), 2)) %>%
  gather(mixture, value, -x) %>%
  ggplot() +
  geom_line(aes(x, value)) +
  facet_wrap(.~mixture, scales = "free_y")

f
rector of means

-

equally weighting
each component

density .

ftp.s-Nly , 4) + INK, 4)+5kg
,

4.

☒ ☒

☒ An

-

mixtures are weighted sums of distributions

Not distributions of weighted sums ! !
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Example 4.2 Let  and , independent.

 such that .

What about ?

n <- 1000
u <- rbinom(n, 1, 0.5)

z <- u*rnorm(n) + (1 - u)*rnorm(n, 4, 1)

ggplot() +
  geom_histogram(aes(z), bins = 50)

¢7 Fx . fxa

Els)=E[ :(xitxa]
= I[E✗,+☒z]=I(0+47--2

Var (5) =VarffaCx.txij_Iyt@arXitVarXD_tyC1tl1-2t.ca
show

, S=÷(X,tXdNN( 2 , 's) .

' ← iii.Iud
" go.int?onIYmixture

:*

A
change U 2- rbinomln

,
I
,
0.7) .
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4.2 Models for Count Data (refresher)

Recall that the Poisson  distribution is useful for modeling count data.

Where  number of events occuring in a �xed period of time or space.

When the mean  is low, then the data consists of mostly low values (i.e. , etc.) and
less frequently higher values.

As the mean count increases, the skewness goes away and the distribution becomes ap-
proximately normal.

With the Poisson distribution,

Example 4.3

Example 4.4 The Colorado division of Parks and Wildlife has hired you to analyze their
data on the number of �sh caught in Horsetooth resevoir by visitors. Each visitor was
asked - How long did you stay? - How many �sh did you catch? - Other questions: How
many people in your group, were children in your group, etc.

Some visiters do not �sh, but there is not data on if a visitor �shed or not. Some visitors
who did �sh did not catch any �sh.

Note, this is modi�ed from https://stats.idre.ucla.edu/r/dae/zip/.

fish <- read_csv("https://stats.idre.ucla.edu/stat/data/fish.csv")

restricts the shape of the dsn
!

- # homes sold per day by a real estate company in Fort Collins
.

- # of calls coming per minute into a hotel reservation call center.

- # of meows in a 2 minute cat video on youtube .
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# with zeroes
ggplot(fish) + geom_histogram(aes(count), binwidth = 1)

# without zeroes
fish %>%
  filter(count > 0) %>%
  ggplot() + 
  geom_histogram(aes(count), binwidth = 1)

""
zeroes

This may
look

more
like a poisson

1with someoutliers
)
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A zero-in�ated model assumes that the zero observations have two different origins –
structural and sampling zeroes.

Example 4.5

A zero-in�ated model is a mixture model because the distribution is a weighted average of
the sampling model (i.e. Poisson) and a point-mass at .

For ,

So that,

To simulate from this distribution,

n <- 1000
lambda <- 5
pi <- 0.3

u <- rbinom(n, 1, pi)
zip <- u*0 + (1-u)*rpois(n, lambda)

→non-zerovaln.TT a zero is possible and occurs by random chance
.

impossible

Outcome of a study
= # low , with foot and mouth disease (FMD) per region

in Turkey.

↳ structural zeroes : there are no cows in te region

↳ sampling zeroes : cows on peeping
but no FMD.

Key point : you don't know whether a region has cows or not.

structural

sampling .

0 with prob IT + G- it) exp 1-77.

{ K with prob Ii- it)*e×¥ K --1,2 , . . -
-

2-~ Bern (F)
.

If 2- =\
,

7=0

If 7--0 ,
Y~ Poisson (7) .
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# zero inflated model
ggplot() + geom_histogram(aes(zip), binwidth = 1)

# Poisson(5)
ggplot() + geom_histogram(aes(rpois(n, lambda)), binwidth = 1)

a
additional

structuring


