Chapter 3: Methods for Simulating Data

Statisticians (and other users of data) need to simulate data for many reasons.

For example, I simulate as a way to check whether a model is appropriate. If the observed
data are similar to the data I generated, then this is one way to show my model may be a
good one.

It is also sometimes useful to simulate data from a distribution when I need to estimate an
expected value (approximate an integral). — (4, 5

R can already generate data from many (named) distributions:

ﬂsﬂlc lafer ..
set.seed(400) #reproducibility ///’ It We con ”VPJMC& o/ 7
’\/m

rnorm(10) # 10 observations of a N(0,1) r.v.

[1] -1.0365488 0.6152833 1.4729326 -0.6826873 -0.6018386 -1.3526097
[7] 0.8607387 0.7203705 0.1078532 -0.5745512

rnorm(10, 0, 5) # 10 observations of a N(0,5%2) r.v.

[1] -4.5092359 0.4464354 -7.9689786 -0.4342956 -5.8546081 2.7596877
[7] -3.2762745 -2.1184014 2.8218477 -5.0927654

rexp(1l0) # 10 observations from an Exp(l) r.v.

[1] 0.67720831 0.04377997 5.38745038 0.48773005 1.18690322 0.92734297
[7] 0.33936255 0.99803323 0.27831305 0.94257810

But what about when we don’t have a function to do it?
L? we, nee d o Wede por opa Bnctions Ao snokote daty, Lo pther
d}-%m-b\,.kl:f\/\&

1 Inverse Transform Method

Theorem 1.1 (Probability Integral Transform) If X is a continuous r.v. with edf Fx, then
U = Fx(X) ~ Uniform|[0, 1]. £

R
This leads to to the following method for simulating data.

Inverse Transform Method:
First, generate u from Uniform[0, 1]. Then, z = F, ' (u) is a realization from Fy.

Note:
i

I
F' oy not be availafle in clowd A 1F TS The cose, use somefiy Olse-

1.1 Algorithm

To do 'HM‘S/ 1e‘f’ ‘F‘(Z): l,(,/ So[l/e_ Af X
b kil x=F ()

op¢f*" 1. Derive the inverse function F)El.

.. & 2. Write a function to compute z = F " (u).

5,'/,,”4(0(){(/0[Vﬂdf'{
w
rand omn valvev ﬂCVW’ Wt Lo,0)

3. For each realization,

a. 9z,/cermfc Q

b lopede x=F ().

1.2 Discrete RVs

Example 1.1 Simulate a random sample of size 1000 from the pdf fx(z) = 3z2,0 <z < 1.
—

1. Fl'/\d (n~e c/q F
F(’ﬁ) = Sb}yzof? = ’7?3

(o] A 2 <o
2
3
$§x 4‘0-\/ 956 ED[‘]
o

' & x>
)
0. Fud F
! -
fr 3ty = F(’)c) ='ch =54 u,é =x = F(w),

=1

p
So F[M)FMJYB D& W=

3. # write code for inverse transform example
f X(x) = 3x"2, 0 <= x \<= 1

@ wh\[@ ‘purf/f'bv‘ p’f F-‘
@ §M{.f-b u hom MHFFC0,0

(3 evducte 2= Flw)
1.2 Discrete RVs

If X is a discrete random variable and - -- < z;—1 < z; < --- are the points of discontinuity
of Fx(x), then the inverse transform is F)El(u) = x; where Fiy(z; 1) < u < Fx(x;). This

leads to the following algorithm:
1. Generate a r.v. U from Unif(0, 1).

2. Select z; where Fx(z;_1) < U < Fx(z;).

4 1 Inverse Transform Method

Example 1.2 Generate 1000 samples from the following discrete distribution.

X <- 1:3
p <- c(0.1, 0.2, 0.7)

x 1.0 2.0 3.0
f 0.10.20.7

write code to sample from discrete dsn
n <- 1000

2 Acceptance-Reject Method

The goal is to generate realizations from a target density, f.
Most cdfs cannot be inverted in closed form.

The Acceptance-Reject (or “Accept-Reject”) samples from a distribution that is similar to
f and then adjusts by only accepting a certain proportion of those samples.

The method is outlined below:

Let g denote another density from which we know how to sample and we can easily calcu-
late g(z).

Let e(-) denote an envelope, having the property e(z) = cg(x) > f(z) for all
z € X ={z: f(x) > 0} for a given constant ¢ > 1.

The Accept-Reject method then follows by sampling Y ~ g and U ~ Unif(0, 1).

IfU < f(Y)/e(Y), accept Y. Set X =Y and consider X to be an element of the target
random sample.

Note: 1/c is the expected proportion of candidates that are accepted.

2.1 Algorithm

1. Find a suitable density g and envelope e.
2. Sample Y ~ g.

3. Sample U ~ Unif(0, 1).

4. IfU < f(Y)/e(Y), accept Y.

5. Repeat from Step 2 until you have generated your desired sample size.

6 2 Acceptance-Reject Method

0.2-

0.1-

0.0-

2.2 Envelopes

Good envelopes have the following properties:

A simple approach to finding the envelope:

2.2 Envelopes

Example 2.1 We want to generate a random variable with pdf f(z) = 60z*(1 — z)

0 <z < 1. This is a Beta(4, 3) distribution.

Can we invert F'(z) analytically?

If not, find the maximum of f(z).

pdf function, could use dbeta() instead
f <- function(x) {

60*x"3*(1-x)"2
}

plot pdf
X <- seq(0, 1, length.out = 100)

ggplot() +
geom_line(aes(x, f(x)))

2.0-
1.5-
210-
0.5-

0.0-
0.00 025 0.50

075

1.00

8 2 Acceptance-Reject Method

envelope <- function(x) {
create the envelope function

Accept reject algorithm

n <- 1000 # number of samples wanted

accepted <- 0 # number of accepted samples
samples <- rep(NA, n) # store the samples here

while(accepted < n) {
sample y from g

sample u from uniform(0,1)
u <- runif(1l)

if(u < f(y)/envelope(y)) {
accept

accepted <- accepted + 1
samples[accepted] <- y

ggplot() +
geom_histogram(aes(sample, y = ..density..), bins = 50,) +
geom_line(aes(x, f(x)), colour = "red") +
xlab("x") + ylab("f(x)")

2.0-
1.5~
1.0-

0.5-

0.0-

2.3 Why does this work?

2.3 Why does this work?

Recall that we require

cg(y) > fly) Vye{y: f(y) > 0}.

Thus,

1)
cg(y)’
distributed with pdf f and the more likely Y is to be accepted.

The larger the ratio the more the random variable Y looks like a random variable

2.4 Additional Resources

See p.g. 69-70 of Rizzo for a proof of the validity of the method.

3 Transformation Methods

We have already used one transformation method — Inverse transform method — but there
are many other transformations we can apply to random variables.

1.1f Z ~ N(0,1), then V = Z2 ~

2. IfU ~ x2, and V ~ x2 are independent, then F = ?//—/TZ ~
~J ~J 2 1 p— Z Y
3.1f Z~ N(0,1) and V ~ x; are independendent, then T VT
4. If U ~ Gamma(r,\) and V ~ Gamma(s, \) are independent, then X = WUV ~

Definition 3.1 A transformation is any function of one or more random variables.

Sometimes we want to transform random variables if observed data don’t fit a model that
might otherwise be appropriate. Sometimes we want to perform inference about a new
statistic.

Example 3.1 If X1, ..., X, ~* Bernoulli(p). What is the distribution of =" | X;?

Example 3.2 If X ~ N(0,1), what is the distribution of X + 5?

Example 3.3 For X;,..., X, iid random variables, what is the distribution of the median
of X1,...,X,? What is the distribution of the order statistics? X;?

There are many approaches to deriving the pdf of a transformed variable.

10

3.1 Algorithm

But the theory isn’t always available. What can we do?

3.1 Algorithm

Let X1,..., X} be a set of independent random variables with pdfs fx,,..., fx,, respec-

11

tively, and let g(X1, ..., X,) be some transformation we are interested in simulating from.

1. Simulate X1 ~ fx,,..., Xp ~ pr.
2. Compute G = g(X1,...,Xp). This is one draw from g(X1,...,X,).

3. Repeat Steps 1-2 many times to simulate from the target distribution.

iid

Example 3.4 It is possible to show for Xy,..., X, ~ N(0,1), Z=>" X2 ~ x2. Imag-

ine that we cannot use the rchisq function. How would you simulate Z?

library(tidyverse)

function for squared r.v.s
squares <- function(x) x"2

sample z <- function(n, p) {
store the samples
samples <- data.frame(matrix(rnorm(n*p), nrow = n))

samples %>%
mutate_all("squares") %$>% # square the rvs
rowSums () # sum over rows

get samples
n <- 1000 # number of samples

apply our function over different degrees of freedom

samples <- data.frame(chisq 2 = sample_z(n, 2),
chisqg 5 = sample_z(n, 5),
chisqg 10 = sample_z(n, 10),

12

#

3 Transformation Methods

chisqg 100 = sample_z(n, 100))

plot results

samples %>%

density

gather(distribution, sample, everything()) %>% # make easier to
plot w/ facets

separate(distribution, into = c("dsn name", "df")) %>% # get the df
mutate(df = as.numeric(df)) %>% # make numeric

mutate(pdf = dchisq(sample, df)) %>% # add density function values

ggplot() + # plot

geom_histogram(aes(sample, y = ..density..)) + # samples
geom_line(aes(sample, pdf), colour = "red") + # true pdf
facet_wrap(~df, scales = "free")
2 5
0.15-
0.10-
0.05-
, 0.00- -
10 20
0.09- 0.03 7
0.06 - 0.02-
0.03- 0.01-
0.00-, - 0.00 - ,

sample

4 Mixture Distributions

The faithful dataset in R contains data on eruptions of Old Faithful (Geyser in Yellow-

stone National Park).

head(faithful)

eruptions waiting

1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55
faithful %>%
gather(variable, value)
ggplot() +
geom_histogram(aes(value), bins = 50) +
facet_wrap(-variable, scales = "free")

20~

What is the shape of these distributions?

eruptions

value

waiting

15-
10-
5.
lams J o- 1 1
3 4 5 50 60 70 80 90

13

14 4 Mixture Distributions

Definition 4.1 A random variable Y is a discrete mixture if the distribution of Y is a
weighted sum Fy(y) = Y 6, Fx,(y) for some sequence of random variables X1, X», ... and
6; > 0 such that > 6, = 1.

For 2 r.v.s,

4.1 Mixtures vs. Sums

Example 4.1

X <- seq(-5,

mixture <- function(x, means,

length.out

= 100)

sd) {

15

x 1s the vector of points to evaluate the function at
means is a vector, sd is a single number

£ <- rep(0,

length(x))

for(mean in means) {
f <- £ + dnorm(x, mean, sd)/length(means) # why do I divide?

-~

look at mixtures of N(mu,

data.frame(x,

4) for different values of mu

fl = mixture(x, c(5, 15), 2),
f2 mixture(x, c(5, 7Y, 2),
£3 mixture(x, c(5, 20y, 2),
f4 = mixture(x, c(1, 20), 2)) %>%
gather (mixture, value, -x) %>%
ggplot() +
geom_line(aes(x, value)) +
facet_wrap(.~-mixture, scales = "free y")
1 f2
0.06 - 0.15-
0.04 - 0.10-
0.02- 0.05-
o 0.00- 0.00-
=]
© f3 4
>
0.06 - 0.06 -
0.04 - 0.04-
0.02 - 0.02-
000 L]] 1 OOO-]]]
0 10 20 0 10 20
X

4.1 Mixtures vs. Sums

Note that mixture distributions are not the same as the distribution of a sum of r.v.s.

16

4 Mixture Distributions

Example 4.2 Let X; ~ N(0,1) and X» ~ N(4,1), independent.
S = 7(X1 + Xa)

Z such that fz(z) = 0.5fx,(z) + 0.5fx,(2).

n <- 1000
u <- rbinom(n, 1, 0.5)
z <- u*rnorm(n) + (1 - u)*rnorm(n, 4, 1)

ggplot() +

geom_histogram(aes(z), bins

= 50)

50 -

25 0.0 25 '

75
What about fz(z) = 0.7fx,(z) + 0.3fx,(2)?

4.2 Count Data 17

4.2 Models for Count Data (refresher)

Recall that the Poisson()) distribution is useful for modeling count data.

_ A"exp{-A}
- x!

f(z) , ©=0,1,2,...

Where X = number of events occuring in a fixed period of time or space.

When the mean A is low, then the data consists of mostly low values (i.e. 0,1, 2, etc.) and
less frequently higher values.

As the mean count increases, the skewness goes away and the distribution becomes ap-
proximately normal.

With the Poisson distribution,
E[X]|=VarX = A.

Example 4.3

Example 4.4 The Colorado division of Parks and Wildlife has hired you to analyze their
data on the number of fish caught in Horsetooth resevoir by visitors. Each visitor was
asked - How long did you stay? - How many fish did you catch? - Other questions: How
many people in your group, were children in your group, etc.

Some visiters do not fish, but there is not data on if a visitor fished or not. Some visitors
who did fish did not catch any fish.

Note, this is modified from https://stats.idre.ucla.edu/r/dae/zip/.

fish <- read _csv("https://stats.idre.ucla.edu/stat/data/fish.csv")

18 4 Mixture Distributions

with zeroes

ggplot(fish) + geom_histogram(aes(count), binwidth = 1)

100 -
c
>
o
(&)
50 -
N L* N _ _
0 50 100 150
count
without zeroes
fish %>%
filter(count > 0) %>%
ggplot() +
geom_histogram(aes(count), binwidth = 1)
30-
20 -
c
>
o
(&)
10 -
. T R ' .
0 50 100 150

count

4.2 Count Data 19

A zero-inflated model assumes that the zero observations have two different origins —
structural and sampling zeroes.

Example 4.5

A zero-inflated model is a mixture model because the distribution is a weighted average of
the sampling model (i.e. Poisson) and a point-mass at 0.

For Y ~ ZIP()),

v 0 with probability 7
Poisson(A) with probability 1 — =

So that,
Y =

To simulate from this distribution,

n <- 1000
lambda <- 5
pi <- 0.3

u <- rbinom(n, 1, pi)
zip <- u*0 + (l-u)*rpois(n, lambda)

20 4 Mixture Distributions

zero inflated model

ggplot() + geom_histogram(aes(zip), binwidth = 1)

300 -

200 -

count

100 -

zip

Poisson(5)

ggplot() + geom_histogram(aes(rpois(n, lambda)), binwidth = 1)

150 -

100 -

count

50 -

rpois(n, lambda)

