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7 Limit Theorems

Motivation

For some new statistics, we may want to derive features of the distribution of the statistic.

When we can’t do this analytically, we need to use statistical computing methods to ap-

proximate them.

We will return to some basic theory to motivate and evaluate the computational methods

to follow.

7.1 Laws of Large Numbers

Limit theorems describe the behavior of sequences of random variables as the sample size

increases ( ).

Often we describe these limits in terms of how close the sequence is to the truth.

We can evaluate this distance in several ways.

Some modes of convergence –

Laws of large numbers –

Mathematical statistics Recap for computing

H X
, , . .
,✗df

n

① What is the distribution of I
= 'T §,Xi ? as n→x ?

② How big does n need to be for I % Normal?

How far is ☒ from µ ?
19

← true/population mean of dsn data generated from ?

statistic
calculated from

dot

How do we measure this distance ?
e- Y ' II-ml

,
or (E-if maybe

what happens to sequences of r.ir.
's

log .
as a gets large

- almost surely I PLY n
= ×) = a)

( gives us useful approximations:)- in probability 8%9%20
,
I:m→•P(Min - ✗ I > E) = 0 }

- in distribution 8 him F-x.tk) = Fancy
n→x

e.g. -

weak LLN : sample mean In converges in
. probability to pop. mean µ .

strong UN
: sample mean Ñn Converges a. s . to pop mean µ .
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7.2 Central Limit Theorem

Theorem 7.1 (Central Limit Theorem (CLT)) Let  be a random sample from a
distribution with mean  and �nite variance , then the limiting distribution of 

 is .

Interpretation:

Note that the CLT doesn’t require the population distribution to be Normal.

i. e. In -9 ✗
,

✗ NN (µ
,
6% ) ( converging oh distribution

.

The sampling distribution of pre sample mean approaches a Normal distribution as

sample size increases
.

Remedy
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8 Estimates and Estimators

Let  be a random sample from a population.

Let  be a function of the sample.

Statistics estimate parameters.

Example 8.1

De�nition 8.1 An estimator is a rule for calculating an estimate of a given quantity.

De�nition 8.2 An estimate is the result of applying an estimator to observed data samples

in order to estimate a given quantity.

We need to be careful not to confuse the above ideas:

We can make any number of estimators to estimate a given quantity. How do we know the

“best” one?

Then Tn is a
" statistic "

and pdf of Tn is called the
" sampling distribution of Tn

"

or pmf

A
functions of Fondation .

sample

In estimates µ .

S
" ¥ .É(Xi - IT estimates

6¥
""
"""

s=fF estimates 6

A statistic like In is a point estimator (
It ban on observations ,

they are estimates)A CI is an internal estimator

function of v.v. 's → estimator (statistic )

function of observed data ( an actual # ) → estimate ( sample statistic )
.

fixed
,
but unknown quantity → parameter.

What are some properties we can use to say an estimator is
" better " than wrote one ?
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9 Evaluating Estimators
There are many ways we can describe how good or bad (evaluate) an estimator is.

9.1 Bias

De�nition 9.1 Let  be a random sample from a population,  a parameter of in-
terest, and  an estimator. Then the bias of  is de�ned as

De�nition 9.2 An unbiased estimator is de�ned to be an estimator 
where

Example 9.1

Example 9.2

Example 9.3

iid y
parameter we

want to

estimate

←
joint density of X, , - , Xn

.

← E[TCXn→✗n)]= STIX, , -

.in#z7dxxbiasCEn)=O.i.e.E(&)--OysupportCqx
If you used Unit 10,1) as your envelope for Rayleigh dsn

, your
tri 's togram

of valves would be biased .

¢0 large values)

let ✗
, ,
- . ,Xn random sample from population ✓ mean µ , variance

62<6
.

C- ( In ) = E- ( t ,ÉXi) = 1- EECX;) = tin .µ=µ
⇒ bias (In ) = E[In ) - µ =p ⇒ In is an unbiased estimator form .

Compare 2 estimators of 62 for Ex
.
9.2

.

Sample variance MLE of variance

5 = ÷,
Élxi -IT Er = d- Éfxi - Inta
- in

-
in

for large
^

5ns I

can show Esa = 62 but É = ÷ S2
,

so I

E- (6^2) = "÷ Es
'
= ^÷ 62

⇒ £2 is a biased estimator.
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9.2 Mean Squared Error (MSE)

De�nition 9.3 The mean squared error (MSE) of an estimator  for parameter  is de-
�ned as

Generally, we want estimators with

Sometimes an unbiased estimator  can have a larger variance than a biased estimator 
.

Example 9.4 Let’s compare two estimators of .

] can show

① small bias

<3 often there is the bias - variance trade-off

( can't have both )

② small variance L

sample MLE

variance

c- (5) = G
' E (E) =

" 62

but var (s) - var ( Ea) !

Can show :

MSE(s4= c- ((5-627) = ¥6 "

MSE (d) =E( (E- •47 = 2%1-6 "

⇒ use (5) > MSE( %) .
see

pg .
331

Casella s Bergen
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9.3 Standard Error

De�nition 9.4 The standard error of an estimator  of  is de�ned as

We seek estimators with small .

Example 9.5

e-
standard error =

St. dev of sampling dsn

of ①n .

selx-nt-uari.IT#-- ¥
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10 Comparing Estimators
We typically compare statistical estimators based on the following basic properties:

1. 

2. 

3. 

4. 

Consistency : as n9 does estimator converge to parameter its estimating ?T

(convergence in probability) .

Bias : Is the estimator unbiased ? C- (0-1)=0

Efficiency : En is moneeffiient than É. if Var(In ) < Var (In ).

MSE : compare MSECÉ
. ) to MSECQI )

pember bias- variance tradeoff MSECÉN ) = Var (0%7 +[Bias( B
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Example 10.1 Let us consider the ef�ciency of estimates of the center of a distribution. A
measure of central tendency estimates the central or typical value for a probability
distribution.

Mean and median are two measures of central tendency. They are both unbiased, which is
more ef�cient?

set.seed(400)

times <- 10000 # number of times to make a sample
n <- 100 # size of the sample
uniform_results <- data.frame(mean = numeric(times), median = 
numeric(times))

normal_results <- data.frame(mean = numeric(times), median = 
numeric(times))

for(i in 1:times) {
  x <- runif(n)
  y <- rnorm(n)
  uniform_results[i, "mean"] <- mean(x)
  uniform_results[i, "median"] <- median(x)
  normal_results[i, "mean"] <- mean(y)
  normal_results[i, "median"] <- median(y)
}

uniform_results %>%
  gather(statistic, value, everything()) %>%
  ggplot() +
  geom_density(aes(value, lty = statistic)) +
  ggtitle("Unif(0, 1)") +
  theme(legend.position = "bottom")

normal_results %>%
  gather(statistic, value, everything()) %>%
  ggplot() +
  geom_density(aes(value, lty = statistic)) +
  ggtitle("Normal(0, 1)") +
  theme(legend.position = "bottom")

←
ECI )=E[I] --u
-

i. e. which has smaller variance ?

←
# of

draws

from
sampling

dsn

of
statistic

] store results.

← unit [ 0,17"Ñ° size n=(00
← Normal cop )MÑ

-

size n=poo y
store mean

of unit
samples

← store median
of uniform samples

\

estimate
and ] plot results.

plot
density →

of statistic

from
samples

\
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Next Up In Ch. 5, we’ll look at a method that produces unbiased estimators of !

T
sampling
dsns

sampling dsn

of÷÷¥÷¥:-.me. ÷t÷÷÷
g

g
true mean

-

-
true median :O.

true mean
= the median = o

.
S

This is not the
For both data scenarios,

Unit10,17 and N( 0,17,
case for all dsns

,

BIAS : both them and median are unbiased
.

µ
Ex : When a dsn is

heavy failed, median
EFFICIENCY : mean more efficient than median can be more efficient

Ñar (mean Cx, , . .,×i) < Vir (medics CX, , - , ✗d) than the mean
.

-


