
Chapter 2: Probability for Statistical
Computing
We will brie�y review some de�nitions and concepts in probability and statistics that will
be helpful for the remainder of the class.

Just like we reviewed computational tools (R and packages), we will now do the same for
probability and statistics.

Note: This is not meant to be comprehensive. I am assuming you already know this and
maybe have forgotten a few things.

https://xkcd.com/892/

Alternative text: “Hell, my eighth grade science class managed to conclusively reject it
just based on a classroom experiment. It’s pretty sad to hear about million-dollar research
teams who can’t even manage that.”

Just like
we

did forR .

i. e. you may
need more refreshing outside

of class . .
.
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1 Random Variables and Probability
De�nition 1.1 A random variable is a function that maps sets of all possible outcomes of
an experiment (sample space ) to .

Example 1.1

Example 1.2

Example 1.3

Types of random variables –

Discrete take values in a countable set.

Continuous take values in an uncountable set (like )

-

-

Toss 2 dice

☒ = sum of the values on top of dice.

[
V.V i

Randomly select 25 deer and
test for CWD

Ghronic wasting disease)

I = sample space
= { +, - CWD}

A if test is +
v.v. ☒ i = { 0 if test is

-

Observe ✗n -
- izs

P= Éii/25 is also a RV
!

Today 's high temperature =X;

Ex 1.1 and Xi from Ex 1.2

Teal numbers fax) .
Ex

. 1.3
,

✗ i EIR

P from Ex 1.2
,
PE [oil ]

.



1.1 CDFs and PDFs 3

1.1 Distribution and Density Functions

De�nition 1.2 The probability mass function (pmf) of a random variable  is  de�ned
by

where  denotes the probability of its argument.

There are a few requirements of a valid pmf

1. 

2. 

3. 

Example 1.4 Let  all possible values of a roll of a single die  and  be the
outcome of a single roll of one die .

A pmf is de�ned for discrete variables, but what about continuous? Continuous variables
do not have positive probability pass at any single point.

De�nition 1.3 The probability density function (pdf) of a random variable  is  de�ned
by

 is a continuous random variable if there exists this function  such that for all 
, this probability exists.

For  to be a valid pdf,

1. 

2. 

✗

discrete

sometimes when r.ir, is obvious we will omit the subscript.

flx) Zo txt )f.

£fGc7 =p

n:[quite We call ☒ ={x : ffx) > 0 } the
"

support
"

of ✗ .

f-(1) =p(11--1)=+6 ①✓ flock 0 Hit#
:

5-(6) = % ②✓ £+1M
-

-1

mg

where ACIR

must integrate
to 1 !

(area under curve
= 17

.

ftx) 20 for all ✗ ÷¥÷#I:÷ .sftxldxi-1.IR
so :

Again * = { 1-64>03 is the
"

support
"

ofx.



4 1 RVs and Probability

There are many named pdfs and cdfs that you have seen in other class, e.g.

Example 1.5 Let

Find  and then �nd 

De�nition 1.4 The cumulative distribution function (cdf) for a random variable  is 
de�ned by

The cdf has the following properties

1. 

2. 

3. 

A random variable  is continuous if  is a continuous function and discrete if  is a
step function.

Example 1.6 Find the cdf for the previous example.

Note  in the continuous case.

Binomial , geometric, bernouik.li, Poisson , Normal, Beta, Gamma , exponential

* support

g.
t.fm

is
incarnating

✓
a
valid pdf .

* = £+1M dx = Sioux-2×4 dx=c[ 2×2 -20¥] ? = c [ ;-] ⇒ c=

"""
"

PCX > 1) =§fGddx = §
,

? fix -2>e) dx - ↳ [2×2 -2¥ ] ? = I
✗
both cts

and
I discrete.

rive

f
O
- O-

valid nr. has to beats.

*
" " *"→

Fx is non - decreasing ./
•→

does!Into
f-
✗
is right continuous. beats

•-0

him Fxtx) --0 and limF×G4=1
.

•→

✗→ -✗ x→x

#Ix

Fix)=P( ✗ 2- x) ✗c- 112 .

what if ✗£28 ? f-
✗
till -0

what it xz2? F×Ga=A

for xt(0,2)
,
P(✗ ⇒c) = [ ÷(4y -2%2)dy,= Is [ay' -2¥ ]? = }-x41

-%)
✗ EO

⇒ Fxlx) = sea-E.) ocelots

f-
I 222.



1.2 Two continuous RVs 5

Recall an indicator function is de�ned as

Example 1.7

Example 1.8 If , the pdf is  for .

If , what is ?

1.2 Two Continuous Random Variables

De�nition 1.5 The joint pdf of the continuous vector  is de�ned as

for any set .

Joint pdfs have the following properties

1. 

2. 

and a support de�ned to be .

2

ya y=oE1{x>03

¥
.

'

we know symmetry !

"

÷ ."":*.

⇒ Go)dx= E- exec-E)dx =L .

Need 1=5
.

exp C-E) dx .

1--5
.

exec-E)dx=E

need .
⇒ G-2

.

AA

Note we can also have joint pmf 's

for discrete variables .

fyytx.gl?0V-xiy . EE ffxiy) = 1 .

*55fx.ylxiyf.dxdy-9-x.rs
ik



6 1 RVs and Probability

Example 1.9

The marginal densities of  and  are given by

Example 1.10 (From Devore (2008) Example 5.3, pg. 187) A bank operates both a drive-
up facility and a walk-up window. On a randomly selected day, let  be the proportion of
time that the drive-up facility is in use and  is the proportion of time that the walk-up
window is in use.

The the set of possible values for  is the square 
. Suppose the joint pdf is given by

Evaluate the probability that both the drive-up and the walk-up windows are used a quar-
ter of the time or less.

Pf a a- ✗ c- b
,
c c- Y c- d) = fxytxir) dydx , ,¥÷÷÷:÷:¥÷i÷÷¥¥÷÷÷÷÷÷

box = Place✗
c-biked.

5-✗
Gc) .

fxytkit
) fyty)

p( drive up
used £ ÷ andudk#d £ 'T)

= p(✗ ± f- , Y ± ;-)
⇒ 1/4 44

= § ! G- lxtydxdy
g-- Yy

=
""

go.EE + Mi] ,⇐ . dy
=

"

5
.

:[÷ + E.) da
= :-[ F. + ?÷Y= :-[÷ 'T

+ ¥14T]=÷o = o.com.



1.2 Two continuous RVs 7

Find the marginal densities for  and .

Compute the probability that the drive-up facility is used a quarter of the time or less.

Sixth = § E- lxtyydy = E- [xy+y÷]j⇒= { 6*1×+5)
for recon]

① O - W ,

f
,
(g) = § E- lxtyldx = E. 4¥ + xy=o= { E-

( ¥+27 for zc-co.is

O o. W .

☒
•

Yy

Pfxs ;-) = Sofxlxldx = 5%1 (x+E) dx
= :[÷ :|

"

O

= E- ( I + ÷;)
= ¥ = 0.1375.



8

2 Expected Value and Variance
De�nition 2.1 The expected value (average or mean) of a random variable  with pdf or
pmf  is de�ned as

Where  is the support of .

This is a weighted average of all possible values  by the probability distribution.

Example 2.1 Let . Find .

Example 2.2 Let . Find .

De�nition 2.2 Let  be a function of a continuous random variable  with pdf .
Then,

De�nition 2.3 The variance (a measure of spread) is de�ned as

✗parameter
← pmf fsupP°¥

✗ = { !
"

!! ⇒ g-boy = {F
when ✗=\

1-p
when x=o

or ffx) =p
" G- PY
"

✗c- {o, , }

Efx] = Extxlx) = 00 :(1-p) + 7- • ( p) =p.

gudu
= uv - Svdu

KEE f 9

✗
Need integration by parts

!! picky.

flx) = { ✗ é
"

xzo
O o ,

w .
( HW 3) .

✗

EH S⑦ tcxidx = f④aé
If
u

0
U dv.

f-
sometimes this is hard

(impossible) to

compute by hand
!

qq.FI?Ytiiiim ⇒ we will need computing to

+¥gY¥¥¥É"*
"

help estimate mis rake.

← 81×7=41- EM
' (chis) .

2 simplified
*
computationally
friendly formula

.
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Example 2.3 Let  be the number of cylinders in a car engine. The following is the pmf
function for the size of car engines.

x 4.0 6.0 8.0
f 0.5 0.3 0.2

Find

Covariance measures how two random variables vary together (their linear relationship).

De�nition 2.4 The covariance of  and  is de�ned by

and the correlation of  and  is de�ned as

Two variables  and  are uncorrelated if .

who might care about
this?

car parts manufacturer

car parts distributor

EPA ?
= IxfGd= 410.57+610.31+810.21=5.4.

*

= EH - [Ex]
'

[-1×2]=2×41×1--440.5 ) + 640.3) + 840.27=31.6
*

⇒ Var ( X)
-
- 31.6-8.47=2.44 easier to interpret : Sdk)

= Farah = 1,56

y y r a-

Cov [✗ it] ¥0
.

÷÷÷
""""° ÷i÷i÷

,

" random noise
.

×
✗

Note
,
for 2 Iii. 's ,

✗ as

* E[g(xiD]=§fgHyH×i"¥g
-x
-no

2 discrete rvs :

C- [-1,1]
C- [

glx.yif-EEgcx.gl#idy-Y'tK-niear
relationship

-_
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3 Independence and Conditional Probability
In classical probability, the conditional probability of an event  given that event  has
occured is

De�nition 3.1 Two events  and  are independent if . The converse is
also true, so

Theorem 3.1 (Bayes’ Theorem) Let  and  be events. Then,

3.1 Random variables

The same ideas hold for random variables. If  and  have joint pdf , then the
conditional density of  given  is

Thus, two random variables  and  are independent if and only if

Also, if  and  are independent, then

-

→ PCAIB) PCB) = PlanB) .

PIA D PlB)

faith of land . PNP

P(BlpA)yzf

, £×M¥j÷ ; *¥Y¥-, = tix .

deth
ind

.
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4 Properties of Expected Value and Variance
Suppose that  and  are random variables, and  and  are constants. Then the follow-
ing hold:

1.  

2.  

3. If  and  are independent, then  

4.  

5.  

6. If  and  are independent,  

a EX tb

C-✗ + Ey

E[x] ELY]
.

0

oivarx

Varx + Vary
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5 Random Samples
De�nition 5.1 Random variables  are de�ned as a random sample from  if 

.

Example 5.1

Theorem 5.1 If , then

Example 5.2 Let  be iid. Derive the expected value and variance of the sample

mean .

← "

independent and identically distributed
"

✗ , ,
. .

. ,XnÉdN( 0,62) . us
.

✗
,

~ NIM , ,
67

but Not distributed identically .

k~ncm.is } !! ! III.,

§
,
.
. .fr?4i--ixn) = .

joint pdf *
product of marginals,
easier to work

with .

✗is
iid⇒

EX,
= EXz= .

. .

= Exn

prop
" prop

2

E[±§x:] = ÷E[Éxi]=÷ÉExi
= 1- ÉEX .

-

- HEX ,

-

- Ex
,

f- i

✗is
iid⇒

Varxi- - - -

-

- Varxn

props
independent
+ prop

b

var [ t.EXJ-n-varfzxif-nkzvarxi-tevarxi-I.in/varx.--VI-
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6 R Tips
From here on in the course we will be dealing with a lot of randomness. In other words,
running our code will return a random result.

But what about reproducibility??

When we generate “random” numbers in R, we are actually generating numbers that look
random, but are pseudo-random (not really random). The vast majority of computer lan-
guages operate this way.

This means all is not lost for reproducibility!

Before running our code, we can �x the starting point (seed) of the pseudorandom num-
ber generator so that we can reproduce results.

Speaking of generating numbers, we can generate numbers (also evaluate densities, distri-
bution functions, and quantile functions) from named distributions in R.

set.seed(400)

rnorm(100)
dnorm(x)
pnorm(x)
qnorm(y)

fwhidfstn-ebvtinrardgfwkeuu.co?evalud-Eeensitrlmas

µevaluate
Cdf

everytime
i
may

be useful
to you

for future
homework. . .


