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1.4 Bootstrap CIs

We will look at �ve different ways to create con�dence intervals using the boostrap and
discuss which to use when.

1. Percentile Bootstrap CI

2. Basic Bootstrap CI

3. Standard Normal Bootstrap CI

4. Bootstrap 

5. Accelerated Bias-Corrected (BCa)

Key ideas:

-

8 studentized)

11

adjusted for skewness

t which to use when !

① when you say
"
we used bootstrapping to estimate CI

"

you need to

say
which one .

-

② whatever you are bootstrapping needs to hindgut

③ Bootstrapping is an attempt to simulate replication

( think about interpretation of a CI) .
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1.4.1 Percentile Bootstrap CI

Let  be bootstrap replicates and let  be the  quantile of .

Then, the  Percentile Bootstrap CI for  is

In R, if bootstrap.reps = c( ), the percentile CI is

Assumptions/usage

quantile(bootstrap.reps, c(alpha/2, 1 - alpha/2))

estimates dm of
E
n Ex

via sootArp
'

ayy
a 1µm

? ?

-

estimate of sampling Isn
"

bootstrap dsn
"

( Ean , 0%-42 )

vector of bootstrap replicates .

① widely used because simple to implement & explain

② Use when little bias and skewness in bootstrap dsn
.

⑤ Drawback : CI 's usually to narrow ! ( courage too low ) .
-

⑨ Bca intervals usually perform better (nominal courage) .
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1.4.2 Basic Bootstrap CI

The  Basic Bootstrap CI for  is

Assumptions/usage

( corrects for bias)
-

( ⑤ - [Ei-ah- E ] , E
- [ Em - EY) receiving

the i. some

based on estimated
liked. I ←

I - ah quantile of bootstrap dsn for E bias
,

si.

.. .
* - om .

① Better than percentile bootstrap bro corrects for bias
.

( does nothing for skewness?

② Harder to explain .
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1.4.3 Standard Normal Bootstrap CI

From the CLT,

So, the  Standard Normal Bootstrap CI for  is

Assumptions/usage

2- =
I - ECE)
-

seCE)
in Nco

,
D
.

under some assumptions . - -

•

Et Zundel El .
in

comes from bootstrap replicates,

Sd ( E
'"

,
. .

,
EB) .

① I i N ( ECE ) , se ( ET)← BIG assumption if E is not a

sample mean .

⑧ If I is unbiased ⇒ ELE) - O ✓
→

see later

( If not unbiased
,
bias corrected version w/ this method too )

• de
'

③ typically requires large n
.
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1.4.4 Bootstrap  CI (Studentized Bootstrap)

Even if the distribution of  is Normal and  is unbiased for , the Normal distribution is

not exactly correct for .

Additionally, the distribution of  is unknown.

 The bootstrap  interval does not use a Student  distribution as the reference dis-

tribuion, instead we estimate the distribution of a “t type” statistic by resampling.

The  Boostrap  CI is

Overview

To estimate the “t style distribution” for ,

f
this is a

misleading
name.

(because he estimate self)) .

t' =
E - ECE)
- n t
Sica

n - i
?

-

← isnt sir

So we cannot claim t v th- i

2-

-

students
'zed

.

bootstrap

quartile of the bootstrap
"t - type

" statistic .

t

ft - ti. Et E'mise CEI)
T T T

estimate of 0
.

from origin sample she I -- se band on (E '"
,
. . ,
E"")

.

freshofthis fbstitnstdimnp
for ft

t - type statistic t
' ''
= EYgfgf.IT

.

. .
. .

,
tan =

silo "") .
-

= bootstrap estimate of se of E based

1 . Complete E l based on sample × . . -in .

on the first bootstrap sample.

a. for each replicate b -- Ic -
y
B

DOUBLE BOOTSTRAP !
a) sample w/ replacement from E

E
"
-

- Gci"
.
.
. ,
x.
"Y

.

WoAH€
e) compute

" t style
"

statistics
b) Compute

It"
tch = Ecb) - E

c) for each replicate r
-

- I
,
- - i R TED

.

i ) sample w/ replacement from XI
"

ii. Ig!!
" "

" "
i . . .
xn.vn)

" store:!!:*.. if
d) hompute set on ch)

.

= sdf .Gada! . . ., faith
))
4 . Coyote CI .
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Assumptions/usage

① Require small bias and skewness in bootstrap dsn
.

* ② Computationally intensive .

③ Need A independent of ie CE ) .
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1.4.5 BCa CIs

Modi�ed version of percentile intervals that adjusts for bias of estimator and skewness of
the sampling distribution.

This method automatically selects a transformation so that the normality assumption
holds.

Idea:

The BCa method uses bootstrapping to estimate the bias and skewness then modi�es
which percentiles are chosen to get the appropriate con�dence limits for a given data set.

In summary,

"

accelerated Bias corrected .

"

- -

Assume there exists a men iton
'

Cally increasing function g and constants a.bet.

u =
gCE ) - geol
-t k u N lo

,
l)

.

I t a gut)

where I tag lol so.

Bla is like percentile bootstrap , but instead of
( ⑤ Ha , Grant .

Bca chooses better granites ( not 42, ? I - Ha ) to account for both bias and
skewness

.

Assumptms/usage
① Better theoretical I practical performance than percentile method

(better coveragej

② harder to explain .
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Your Turn

We will consider a telephone repair example from Hesterberg (2014). Verizon has repair

times, with two groups, CLEC and ILEC, customers of the “Competitive” and “Incum-

bent” local exchange carrier.

##    Time Group 

## 1 17.50  ILEC 

## 2  2.40  ILEC 

## 3  0.00  ILEC 

## 4  0.65  ILEC 

## 5 22.23  ILEC 

## 6  1.20  ILEC

Group mean sd min max

CLEC 16.509130 19.50358 0 96.32

ILEC 8.411611 14.69004 0 191.60

library(resample) # package containing the data

data(Verizon)
head(Verizon)

Verizon %>%

  group_by(Group) %>%
  summarize(mean = mean(Time), sd = sd(Time), min = min(Time), max = 
max(Time)) %>%

  kable()

ggplot(Verizon) +
  geom_histogram(aes(Time)) +
  facet_wrap(.~Group, scales = "free")

T T

other carriers verizon customers

Verizon required by law to serve both at same speed.

-

÷
1664
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1.5 Bootstrapping CIs

There are many bootstrapping packages in R, we will use the boot package. The function
boot generates  resamples of the data and computes the desired statistic(s) for each
sample. This function requires 3 arguments:

1. data = the data from the original sample (data.frame or matrix).
2. statistic = a function to compute the statistic from the data where the �rst argu-

ment is the data and the second argument is the indices of the obervations in the
boostrap sample.

3.  = the number of bootstrap replicates.

ggplot(Verizon) +
  geom_boxplot(aes(Group, Time))

also :

simpleboot



18 1 Nonparametric Bootstrap

If we want to get Bootstrap CIs, we can use the boot.ci function to generate the 5 dif-
ferent nonparamteric bootstrap con�dence intervals.

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 

## Based on 2000 bootstrap replicates 

##  

## CALL :  

## boot.ci(boot.out = boot.ilec, conf = 0.95, type = c("perc", "basic",

library(boot) # package containing the bootstrap function

mean_func <- function(x, idx) {
  mean(x[idx])
}

ilec_times <- Verizon[Verizon$Group == "ILEC",]$Time

boot.ilec <- boot(ilec_times, mean_func, 2000)

plot(boot.ilec)

boot.ci(boot.ilec, conf = .95, type = c("perc", "basic", "norm", 
"bca"))

Ita finder of resampled observations

of a
^ *

- ←
f

← just
Verizon

customers.

data statistic R
function. # of replicates

[
looks

normal
1 to me- -u

e
"

suey; joy
.

←
missing

studded ,
later.
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##     "norm", "bca")) 

##  

## Intervals :  

## Level      Normal              Basic          

## 95%   ( 7.719,  9.114 )   ( 7.709,  9.119 )   

##  

## Level     Percentile            BCa           

## 95%   ( 7.704,  9.114 )   ( 7.752,  9.164 )   

## Calculations and Intervals on Original Scale

## [1] 7.709670 9.104182

## [1] 7.719039 9.113551

##     2.5%    97.5%  

## 7.707656 9.111150

##    97.5%     2.5%  

## 7.712071 9.115565

## we can do some of these on our own
## normal
mean(boot.ilec$t) + c(-1, 1)*qnorm(.975)*sd(boot.ilec$t)

## normal is bias corrected
2*mean(ilec_times) - (mean(boot.ilec$t) - c(-1, 
1)*qnorm(.975)*sd(boot.ilec$t))

## percentile
quantile(boot.ilec$t, c(.025, .975))

## basic
2*mean(ilec_times) - quantile(boot.ilec$t, c(.975, .025))

f. bigoted

-

bootstrap samples of Fe. E"'
,
.
.

,
Etr)

* It

[
bias

cornuted version

⑦
-

I f

[ . ]

tar
-

gimp 9
MY por
t

iii. (
V
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To get the studentized bootstrap CI, we need our statistic function to also return the vari-
ance of .

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 

## Based on 2000 bootstrap replicates 

##  

## CALL :  

## boot.ci(boot.out = boot.ilec_2, conf = 0.95, type = "stud") 

##  

## Intervals :  

## Level    Studentized      

## 95%   ( 7.733,  9.231 )   

## Calculations and Intervals on Original Scale

Which CI should we use?

mean_var_func <- function(x, idx) {
  c(mean(x[idx]), var(x[idx])/length(idx))
}

boot.ilec_2 <- boot(ilec_times, mean_var_func, 2000)
boot.ci(boot.ilec_2, conf = .95, type = "stud")

foodie.tamp!

org

This not always

← estimate; jump.
so easy .

also look at simple
boot : one..Boot

dsn

All very similar , doesn't
look very skewed or biased.

8 Bca my default
choice because has been shewn to have good

coverage .

* Percentile & Basic not a bad choice if explaining to stake holders
.

n large t QQ plot ⇒ Normal is a valid interval as well .
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1.6 Bootstrapping for the difference of two means

Given iid draws of size  and  from two populations, to compare the means of the two
groups using the bootstrap,

The function two.boot in the simpleboot package is used to bootstrap the difference
between univariate statistics. Use the bootstrap to compute the shape, bias, and bootstrap
sample error for the samples from the Verizon data set of CLEC and ILEC customers.

library(simpleboot)

clec_times <- Verizon[Verizon$Group == "CLEC",]$Time

diff_means.boot <- two.boot(ilec_times, clec_times, "mean", R = 2000)

ggplot() +
  geom_histogram(aes(diff_means.boot$t)) +
  xlab("mean(ilec) - mean(clec)")

qqnorm(diff_means.boot$t) 
qqline(diff_means.boot$t)

A
.
for replicates b - l

, -
. . , B

a) thesample w/ replacement a sample of size n from sample I and a sample of
size m from sample 2 .

b) Compute a statistic that compares two groups lie .
I'"= Ii"- 5cg)

2 . Construct a bootstrap dsn af he statistic OF"
, .
.

,
I"" - inspectshape,

bias
,
she

9 . Compute an appropriate CI based on 2 .

←
non
-
verizon

customer response
times .

verizon non - verizon

plotbootstrap
dsn
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Which con�dence intervals should we use?

Is there evidence that

is rejected?

# Your turn: estimate the bias and se of the sampling distribution

# Your turn: get the chosen CI using boot.ci

pawn
"

O
skewness ,

or -

l LEC - CLEC

Yes !

There is evidence for the alternative, Verizon is treating their consumers

difficulty than other company
's customers !
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2 Parametric Bootstrap
In a nonparametric bootstrap, we

In a parametric bootstrap,

For both methods,

resample observed data .

Create a bootstrap sample yi , . ., y ne ird from empirical distribution E.
This is equivalent to resampling the original data w/ replacement

.

we assume a parametric model
,
-

Kezia : use a fitted parametric model Ely) = fly IT )
to estimate

f where it is estimated from the data ( using MLE) .

Create a bootstrap sample yi . . . .,y*n iid from fly IT) , i.e . resample from a

model 4 parameters estimated by original sample data.

① We compute the statistic E
""

for each bootstrap sample

Yi
"? . . , yids)

② We repeat the procedure B tires to get

E""
.
. . ,

0¥"

And make inferences using the result.
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2.1 Bootstrapping for linear regression

Consider the regression model  with .

Two approaches for bootstrapping linear regression models –

1. 

2. 

2.1.1 Bootstrapping the residuals

1. Fit the regression model using the original data

2. Compute the residuals from the regression model,

3. Sample  with replacement from .

4. Create the bootstrap sample

5. Estimate 

6. Repeat steps 2-4  times to create  bootstrap estimates of .

Assumptions:

wgtopivtdy.nrlxip.ci)
~ independently .

-

Y
, , . . . ,

Ya independent butnot iid ! They were different conditional means !

Resampling in the bootstrap must be done on iid quantities!

Bootstrap the residuals (model based bootstrapping) - parametric .

Paired bootstrapping (case re sampling) - nonparametric .

residuals Ei are assured
iidV\ - o÷:÷:÷

""

{y*, in
Use q¥n, to fit new regression model , get f*

to estimate dsn of § .

The design matrix X = Hi , - - y Xn) is fixed .

* Ei are iid .
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2.1.2 Paired bootstrapping

Resample  from the empirical distribution of the pairs .

Assumptions:

2.1.3 Which to use?

1. Standard inferences - 

2. Bootstrapping the residuals - 

3. Paired bootstrapping - 

(ease nsampling ) .

Fit regression model w/ n bootstrapped pairs (Yi, Ii )
"

Yi = (Ii )Tp t Ci i-- to . - yn

Assures (yixi) are iid from population .

Can have varying design matrix X .

(i.e. STAT 341)

Most of the time.

- mostappropriate for designed experiments where I ; fixed in advance
.

- model-based ( regression model must be valid for the data) .

- often useful if complex sampling distribution for B .

- robust to model mis -specification
( if you

have doubts about the adequacy of the regression model such as

heteroscedasticitg) .

- useful for observational studies
where values of explanatory variables

aren't fixed in advance ⇒ paired bootstrap mirrors data generating mechanism.
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Your Turn
This data set is the Puromycin data in R. The goal is to create a regression model about
the rate of an enzymatic reaction as a function of the substrate concentration.

##   conc rate   state 

## 1 0.02   76 treated 

## 2 0.02   47 treated 

## 3 0.06   97 treated 

## 4 0.06  107 treated 

## 5 0.11  123 treated 

## 6 0.11  139 treated

## [1] 23  3

head(Puromycin)

dim(Puromycin)

ggplot(Puromycin) +
  geom_point(aes(conc, rate))

ggplot(Puromycin) +
  geom_point(aes(log(conc), (rate)))

-

n
--23

,
small data ,

linear - ish
treated

fi:
:::. .
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2.1.4 Standard regression

##  

## Call: 

## lm(formula = rate ~ conc, data = Puromycin) 

##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  

## -49.861 -15.247  -2.861  15.686  48.054  

##  

## Coefficients: 

##             Estimate Std. Error t value Pr(>|t|)     

## (Intercept)    93.92       8.00   11.74 1.09e-10 *** 

## conc          105.40      16.92    6.23 3.53e-06 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 28.82 on 21 degrees of freedom 

## Multiple R-squared:  0.6489, Adjusted R-squared:  0.6322  

## F-statistic: 38.81 on 1 and 21 DF,  p-value: 3.526e-06

##                2.5 %   97.5 % 

## (Intercept) 77.28643 110.5607 

## conc        70.21281 140.5832

##  

## Call: 

## lm(formula = rate ~ log(conc), data = Puromycin) 

##  

m0 <- lm(rate ~ conc, data = Puromycin)
plot(m0)
summary(m0)

confint(m0)

m1 <- lm(rate ~ log(conc), data = Puromycin)
plot(m1)
summary(m1)
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## Residuals: 

##     Min      1Q  Median      3Q     Max  

## -33.250 -12.753   0.327  12.969  30.166  

##  

## Coefficients: 

##             Estimate Std. Error t value Pr(>|t|)     

## (Intercept)  190.085      6.332   30.02  < 2e-16 *** 

## log(conc)     33.203      2.739   12.12 6.04e-11 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 17.2 on 21 degrees of freedom 

## Multiple R-squared:  0.875,  Adjusted R-squared:  0.869  

## F-statistic: 146.9 on 1 and 21 DF,  p-value: 6.039e-11

##                 2.5 %   97.5 % 

## (Intercept) 176.91810 203.2527 

## log(conc)    27.50665  38.8987

confint(m1)
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not raffle around
do

not
normal

O
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2.1.5 Paired bootstrap

# Your turn
library(boot)

reg_func <- function(dat, idx) {
  # write a regression function that returns fitted beta
}

# use the boot function to get the bootstrap samples

# examing the bootstrap sampling distribution, make histograms

# get confidence intervals for beta_0 and beta_1 using boot.ci

X

f
terrible .

*
seed
as
Mitt

w

ji's got no

-
not

-
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2.1.6 Bootstrapping the residuals

# Your turn
library(boot)

reg_func_2 <- function(dat, idx) {
  # write a regression function that returns fitted beta
  # from fitting a y that is created from the residuals
  

}

# use the boot function to get the bootstrap samples

# examing the bootstrap sampling distribution, make histograms

# get confidence intervals for beta_0 and beta_1 using boot.ci

results are very similar to standard inference . ⇒ ok to use standard

results.

If bootstrapping ,
this is designed experiment
so bootstrapping residuals is good choice as long as model fit looks

appropriate (which it
did).


