Chapter 7: Monte Carlo Methods in Inference

Monte Carlo methods may refer to any method in statistical inference or numerical analy-
sis were simulation is used.

We have so far learned about Monte Carlo methods for estimation.
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We will now look at Monte Carlo methods to estimate coverage probability for confidence
intervals, Type I error of a test procedure, and power of a test. Toderence!

In statistical inference there is uncertainty in an estimate. We will use repeated sampling.

(Monte Carlo methods) from a given probability model to investigate this uncertainty.
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1 Monte Carlo Estimate of Coverage

1.1 Confidence Intervals

Recall from your intro stats class that a 95Zconﬁdence interval for u (when o is known and
X1,..., X, w N(u,0?)) is of the form
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1.2 Vocabulary 3

Definition 1.1 For X;,..., X, “ N(u,0?), o known, the (1 — a)lOOZconﬁdence interval

for p is
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In general,
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So, if we have formulas for L and U, we can use Monte Carlo integration to estimate c.
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An estimate of 1 — « tells us about the behavior of our estimator [L, U] in practice.
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4 1 Coverage

1.3 Algorithm

Let X ~ Fx and 6 is the parameter of interest.
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Example 1.1

X~ N ()
15 pardwcks of efeedt.
Consider a confidence interval for 6, C = [L,U]. &— form dedermired tut 'fh»/?

Then, a Monte Carlo Estimator of Coverage could be obtained with the following
algorithni.
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1.4 Motivation

1.4 Motivation

Why do we want empirical and nominal coverage to match?
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Example 1.2 Estimates of [L, U] are biased.
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Example 1.3 Estimates of [L, U] have variance that is smaller than it should be.
httu‘
=> |ow Cem.cal- ~ --
"wn.:
¢
Example 1.4 Estimates of [L, U] have variance that is larger than it should be.
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6 1 Coverage

Your Turn

We want to examine empirical coverage for confidence intervals of the mean.

1. Coverage for CI for p when o is known, (z — zlfgé,i +2_a L)

EVAL
=

a. Simulate X1,..., X, “ N(0,1). Compute the empirical coverage for a 95 con-

fidence interval for n = 5 using m = 1000 MC samples.

b. Plot 100 confidence intervals using geom segment () and add a line indicat-
ing the true value for g = 0. Color your intervals by if they contain y or not.
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Trve c. Repeat the Monte Carlo estimate of coverage 100 times. Plot the distribution

of the results. This is the Monte Carlo estimate of the distribution of the

_—
coverage.

2. Repeat part 1 but without o known. Now you will plug in an estimage for o (using
sd()) when you estimate the CI using the same formula that assumes ¢ known.
What happens to the empirical coverage? What can we do to improve the coverage?
Now increase n. What happens to coverage?

3. Repeat 2a. when the data are distributed Unif[—1, 1] and variance unknown. What
happens to the coverage? What can we do to improve coverage in this case and why?



