
Chapter 6: Monte Carlo Integration
Monte Carlo integration is a statistical method based on random sampling in order to apÅ
proximate integralsµ This section could alternatively be titled°

ÌIntegrals are hard° how can we avoid doing them¶Í
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1 A Tale of Two Approaches
Consider a oneÅdimensional integralµ

The value of the integral can be derived analytically only for a few functions° µ For the
rest° numerical approximations are often usefulµ

Why is integration important to statistics¶

1µ1 Numerical Integration

Idea¯ Approximate  via the sum of many polygons under the curve µ

To do this° we could partition the interval  into  subintervals  for 
 with  and µ

Within each interval° insert  nodes° so for  let  for ° then

for some set of constants° µ

fifhxtdx
integrand .
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Many quantities of interest in statistics ante written as the expectation of a function
of a random variable
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1µ2 Monte Carlo Integration

How do we compute the mean of a distribution¶

Example 1µ1 Let  and µ

Theory

x <- seq(0, 1, length.out = 1000)
f <- function(x, a, b) 1/(b - a)
ggplot() + 
  geom_line(aes(x, f(x, 0, 1))) +
  \lim(c(0, 1.5)) +
  ggtitle("Uniform(0, 1)")

y <- seq(10, 20, length.out = 1000)
ggplot() + 
  geom_line(aes(y, f(y, 10, 20))) +
  \lim(c(0, 1.5)) +
  ggtitle("Uniform(10, 20)")

(exact) to eoezszo

EX -- S!scflxldx Ey = joy fly) dy where fly)
-

- { o on .

= S! x. Ida
= g. tody

= ii. 's .

- totes:< is .
How about some other dsn?
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⇒ need an approximation .
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�µ�µ� N`nani`^

Dilnkiboni`^ `f 

�µ�µ� M`^ne Cak[` Si]o[ani`^

Whan il M`^ne Cak[` li]o[ani`^¶

= parameter (unknown)

= estimator of G ,
statistic ( sometimes we use I , s ? etc .

instead of E ) ,

= sampling distribution of is a function of
random

variables ⇒ a random variable.

-

-

%::.mn?::htnis.:i;:::...I?eo:}
= theoretical variance of

£

Variance of tu sampling distribution of
E

-= estimated mean of distribution of F

""%d¥§ = """"d """ " & d" * &

= €07 theoretical se of I = Sd of sampling dsu of I

=EEL estimated se off = estimated sd of sampling dsn off

computer simulation that generates a large quantity of samples from a
distribution . The distribution characterizes

the population from which the

sample is drawn .
(sounds a lot like ch

. 3)
.
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1µ2µ� Monte Carlo Integration

To approximate ° we can obtain an iid random sample 
from  and then approximate  via the sample average

Example 1µ2 Again° let  and µ To estimate  and 
 using a Monte Carlo approach°

Now consider µ

The Monte Carlo approximation of  could then be obtained by

1µ 

2µ 

I ①
parameter
character

'us ② *

the population .

Thing we
care

about ! E - at E.X; I EX
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This is useful when he can 't comput EX in closed form
. Also awful

to approximate other integrals .

parameter of
j
interest

Draw Xu -- , Hm n f

E- T.E.irHit .
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De�nition �µ� Monte Carlo integration is the statistical estimation of the value of an inteÅ
gral using evaluations of an integrand at a set of points drawn randomly from a distirbuÅ
tion with support over the range of integrationµ

Example �µ�

Why the mean¶

Let ° then

and° by the strong law of large numbers°

Example �µ� Let ° where ° and assume  has �nite exÅ
pectation under µ Then

We can estimate this using a Monte Carlo approachµ

-

⑦ parameter estimation .
.
Linear models vs

. generalized linear models

Y - Xp TE CNN Co, 04 , § = Cxtxj'xTy closed form solution

GLM : you Biron Cp )
logit Cp) = pot p , X no estimate fer fo , f , in

closed form
.

⑧ estimate quartiles of a dsn . Find y set. 0.9=1! fix) da .
m tires

rn

C-(E) = E[t.im?gCXijf=tm.I..EfglxiD=thCat---toT--
0

so I obtained from MC integration approach is unbiased
-

E -- mL ,¥gCxi)→E[gCxD=o .

xD=ECvcxD
① Sample Xu - > Xm from f

[ don't
!?:Lpianist with

② compute mt.EC gcxi) - of
'

E' = 'T gcxil

Use to estimate sanpliyrariana.se war of = learnt gfxil) caasishifvtewgad.

estimate sold) by iffy
= mtasvargcx;) --¥rarg
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When Varg exists and is finite
,
In CLT states

E - EE
- 0

÷-
-
sd NC 0,1 ) as m→x.

= liargcxm

Have if an is large,
↳

ear plug in
estimate

F- info , targe) Virga) from
above .

We can use
this knock .dge to create confidence limits or error

bounds on the MC estimate of the integral E .
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Monte Carlo integration provides slow convergence° iµeµÑeven though bw the SLLN we
know we have convergence° it maw take us a while to get thereµ

But° Monte Carlo integration is a verw powerful toolµ While numerical integration methods
are dif{cult to evtend to multiple dimensions and work best with a smooth integrand°
Monte Carlo does not suffer these weaknessesµ

�µ�µ� Algorithm

The approach to {nding a Monte Carlo estimator for  is as followsµ

�µ 

�µ 

�µ 

�µ 

Evample �µ� Estimate µ

-

numeric Mc integration doses not attempt a systematic exploration of the p-dimensional support region off.integration
cornet say

(curse of dimensionality .

th
Sant ' { MC doesn't require integrand to be smooth , does not require finite support !

ShGolda2

Select tf g to define 0 as an expected rake .
"TY { derive estimator sat . I approximates Q=EfgCxD=§gGc7fGddxhGddx .

in R . { Sample Xi , - . . Xm from f

compute
E = mt EE

,

glxi) .

de

① let f be the Unit Coil) density ⇒ g Gc)
= hGd .

② pen a = fohlxldx -- S!gCx) . I
,
doc = Efgcxjfv
Unf lo , i) density

③ Sample Xi , - ., Xm from f

> *← run if Cm , o , D .

④ compute Is tmsgcxi)
[ wriktnfuntin in R .

> mean (g Cx))
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Evamhle �µ� Elnimane µ

Anonhek ahhkoach¯

① choose f- = Uuiffa , b) ⇒ fGg = {Ia
at ' ' b

O O
.

W .

Then gbc) = (b - a) oh God,
② So that 0=5! hGolda = Sab ( b - a)hlx) . #a doc = SbagGaffe) da = Eg Cx), Xnunitlaid
③ Sample Xm . ., Xm from Unf Cais) , s act run if Cm , a , b) .

③ Compute f- = mt ¥2 (b -a) oh Gci) > Cb-a) mean (hCsc))
.

( act ) maps (o, D .

what if I chose Y n Un if ( oil) instead?

Then flyI = { A a-yea
O O a W d

But we care about Efg (Y)) = fgty) fly) dy
Y . support

off.

We want to integrate from Ca
,s),

but support of dsa is Cool ) . So we need

aqriab.to use MC integration .

Need a function to map xecqb) to y C- Cool) , we will use linertensfrnatin.

Cy→ x) IIa =T ⇒ FI -- z .

I
solve for x

x = a
t ( b-a) y .

dx = (b -a) dy .

µ

f- = S!gGDdx = fg ( at Cb-a) y) . Cb -a) dy .
-i

g fly ) -- I.

To get E
,

dist -I

~ ① simulate Yi , . - in from Un't lo,D.
# y

° ' ② E -

- fu ??{ gfatyilb-al) lb -a))←of .
⑨ by# we can use this if te limits of integration don't match any density!
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Example 1µ7 Monte Carlo integration for the standard Normal cdfµ Let ° then
the pdf of  is

and the cdf of  is

We will look at 3 methods to estimate  for µ
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1µ2µ5 Inference for MC Estimators

The Central Limit Theorem implies

So° we can construct con�dence intervals for our estimator

1µ 

2µ 

But we need to estimate µ
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So° if  then µ How much does changing  matter¶

Example 1µ� If the current  based on  samples° how many more samples do
we need to get ¶

Is there a better way to decrease the variance¶ Yes²


