Chapter 3: Methods for Simulating Data

Statisticians (and other users of data) need to simulate data for many reasons.
isons. Goodness of fit test.

For example, I simulate as a way to check whether a model is appropriate. If the observed data are similar to the data I generated, then this is one way to show my model may be a good one.

It is also sometimes useful to simulate data from a distribution when I need to estimate an expected value (approximate an integral). Ch, 5

R can already generate data from many (named) distributions:

rnorm(10) \# 10 observations of a $N(0,1)$ rev.

\#\#	$[1]$	-1.0365488	0.6152833	1.4729326	-0.6826873	-0.6018386	-1.3526097
\#\#	$[7]$	0.8607387	0.7203705	0.1078532	-0.5745512		

$\begin{array}{lrrrrrrr}\text { \#\# } & {[1]} & -4.5092359 & 0.4464354 & -7.9689786 & -0.4342956 & -5.8546081 & 2.7596877 \\ \text { \#\# } & {[7]} & -3.2762745 & -2.1184014 & 2.8218477 & -5.0927654 & & \end{array}$
$7=1$
rexp(10) \# 10 observations from an $\operatorname{Exp}(1)$ rev.
${ }^{\lambda}$
\#\# [1] $0.677208310 .04377997 \quad 5.38745038 \quad 0.487730051 .186903220 .92734297$
\#\# [7] 0.33936255 0.998033230 .278313050 .94257810
But what about when we don't have a function to do it?
\rightarrow ne will reed to write our own functions to simulate draws from other distributions.

1 Inverse Transform Method

Theorem 1.1 (Probability Integral Transform) If X is a continuous rev. with pdf F_{X}, then $U^{\wedge}=F_{X}(X) \sim$ Uniform $[0,1]$.

This leads to to the following method for simulating data.

Inverse Transform Method:
First, generate u from Uniform $[0,1]$. Then, $x=F_{X}^{-1}(u)$ is a realization from F_{X}.

Note:
F_{x}^{-1} may not be available in closed form. If that's the case, use something else.

1.1 Algorithm

1. Derive the inverse function F_{X}^{-1}. To do this, Let $F_{x}(x)=u$ Then solve for x to \Longrightarrow find $x=F_{x}^{-1}(u)$.
2. Write a function to compute $x=F_{X}^{-1}(u)$.
in
3. For each realization, simulated valve.
a. generate a raid omvolve from \ln if $[0,1)$
b. Compute $\quad \underset{Y}{x}=F_{x}^{-1}(u)$

$$
\text { simulated draw from } F_{x}(\pi) \text {. }
$$

Example 1.1 Simulate a random sample of size 1000 from the pdf $f_{X}(x)=3 x^{2}, 0 \leq x \leq 1$.
0. Find the oof F_{x}

$$
F_{x}(x)=\int_{0}^{x} 3 y^{2} d y=\left.y^{3}\right|_{0} ^{x}= \begin{cases}0 & x<0 \\ x^{3} & x \in[0,1] . \\ 1 & x>1 .\end{cases}
$$

1. Find F_{x}^{-1}

$$
\begin{aligned}
u= & F_{x}(x)=x^{3} \Rightarrow u^{1 / 3}=x=F_{x}^{-1}(u) . \\
& \text { so } F_{x}^{-1}(u)=u^{1 / 3} \text { for } 0 \leq u \leq 1 \\
& \text { targe of } F_{x}(x) .
\end{aligned}
$$

2. \# write code for inverse transform example \# $f_{-} x(x)=3 x^{\wedge} 2,0<=x \mid<=1$
a) Write function for F^{-1}
b) sample u values from unit $(0,1)]$ loo fires.
c) evaluate $x=f_{x}^{-1}(u)$.

1.2 Discrete RVs

If X is a discrete random variable and $\cdots<x_{i-1}<x_{i}<\cdots$ are the points of discontinuity of $F_{X}(x)$, then the inverse transform is $F_{X}^{-1}(u)=\frac{x_{i}}{\uparrow}$ where $F_{X}\left(x_{i-1}\right)<\underline{u} \leq F_{X}\left(x_{i}\right)$. This
leads to the following algorithm:
jump point

1. Generate a r.v. U from $\operatorname{Unif}(0,1)$.
2. Select $\underset{\substack{x_{i} \\ \text { jump point }}}{ }$ where $F_{X}\left(x_{i-1}\right)<U \Theta \underset{\sim}{F_{X}\left(x_{i}\right)}$.

Example 1.2 Generate 1000 samples from the following discrete distribution.

```
x <- 1:3
p <- c(0.1, 0.2, 0.7)
```


\# write code to sample from discrete din
n <- 1000

There is a really simple way to do this in R. using sample ()

* remember to allow replacement and specify the prob. vector.

Something we can
try when vecan't find F^{-1} (inclosed form)
2 Acceptance-Reject Method the ${ }^{2+t h b t w n}$ we wort to sample from.

The goal is to generate realizations from a target density, f.
Most cdfs cannot be inverted in closed form.
The Acceptance-Reject (or "Accept-Reject") samples from a distribution that is similar to f and then adjusts by only accepting a certain proportion of those samples.
and ryectiry the rest.

The method is outlined below:

Let g denote another density from which we know how to sample and we can easily calculate $g(x)$.
Let $e(\cdot)$ denote an envelope, having the property $e(x)=\varrho g(x) \geq f(x)$ for all the envelope corers $x \in \mathcal{X}=\{x: f(x)>0\}$ for a given constant $c \geq 1$
support of target The Accept-Reject method then follows by sampling $Y \sim g$ and $U \sim \operatorname{Unif}(0,1)$.
(3) This implies that the support of $g($ (.) MUST incluDE the support of f!

If $U<\widehat{f(Y) / e(Y)}$, accept Y. Set $X=Y$ and consider X to be an element of the target random sample.

What night be had/sbow?
Note: $1 / \mathrm{c}$ is the expected proportion of candidates that are accepted.
we can use this to evaluate the efficient of our algorithm.
2.1 Algorithm
$\stackrel{\text { proposal }}{\text { p density } g \text { and envelope } e .}$
(slow) - depending on efficiry, w- might have to draw "LOT of sample jus to kep a few.
(slow) - could be slowti eunluatef
(hard) - choose g \& e
hard step
2. Sample $Y \sim g$.
3. Sample $U \sim \operatorname{Unif}(0,1)$.

$\sin _{s+\rho}^{10 \omega}$. 5 . Repeat from Step 2 until you have generated your desired sample size.
*Requirement: The support of g MUST INCLUDE th support of $f *$

This would not be appropriate because support of f is $(-\infty, \infty)$ ad support of g is $[-10,10]$.

2.2 Envelopes

Good envelopes have the following properties:
(1) envelope exceeds tagit everywhere support of qumstringhde sppest of 5 choose c to make this (1) hopper.
(2) Easy to sample from g.
(3) Generate few rejected draws (save tine).

This worn s
A simple approach to finding the envelope? in some cases.
say the support of f is $x=\{x: 0 \leq x \leq 1\}$
Find $\max _{x}(f(x))$ and let $c=\max _{x}(f(x))$ support of g matadors the

Lt $g(x) \equiv$ Unit $(0,1)= \begin{cases}1 & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}$

$$
e(x)=c g(x)
$$

This is often not efficiat If you know more about the shape of f you conslect a bitter envelope.
Plotting is your fiend here!
 $0 \leq x \leq 1$. This is a $\operatorname{Beta}(4,3)$ distribution.

$$
\longrightarrow \text { could just use metal) in } R \text {. }
$$

Can we invert $F(x)$ analytically?
No. Let's use accept-reject!

If not, find the maximum of $f(x)=c$ Let $g \sim U_{n, f} f(0,1)$.

$$
\begin{aligned}
f^{\prime}(x) & =60\left(3 x^{2}(1-x)^{2}-2 x^{3}(1-x)\right] \\
& =60 x^{2}(1-x][3(1-x)-2 x] \\
& =60 x^{2}(1-x)(3-5 x)=0 \text { when } \quad x=0, x=1 \text {, or } x=\frac{3}{5}
\end{aligned}
$$

$$
c=\max _{x} f(x)=f\left(\frac{3}{5}\right)=2.0736
$$

density for beta

\# pdf function, could use dbeta() instead
(f) $<-$ function (x) \{ $60 * x^{\wedge} 3 *(1-x)^{\wedge} 2$
$\}$
\# plot pdf
$x<-\operatorname{seq}(0,1, \text { length. out }=100)^{\text {rake }} x$ values
$\operatorname{ggplot}()+$
\quad geom_line $(\operatorname{aes}(x, f(x)))$


```
envelope <- function(x) \{
    \#\# create the envelope function \(\longleftarrow\) c. unit pdf
\} \(=c .1\)
    \(=f(3 / s)\)
\# Accept reject algorithm
\(\mathrm{n}<-1000\) \# number of samples wanted
accepted <- 0 \# number of accepted samples
samples <- rep(NA, n) \# store the samples here
while (accepted \(<\) n) \{
run loop until he hove accepted enough (1).
    \# sample y from (9) unif(0,1)
        \(y<r\) runif \(^{(t)}\).
        \# sample u from uniform (0,1)
        u <- runif(1)
    if (u \(<\) f(y)/envelope(y)) \{
            \# accept
            accepted <- accepted + 1
            samples[accepted] <- y spire samples.
        \}
\}
ggplot() +
```



```
    geom_histogram(aes(samples, \(y=\)..density.) ), bins \(=50\), ) +
\(\longrightarrow\) geom_line(aes(x, fix)), colour = "red") +
    xlab("x") + ylab("f(x)")
```


2.3 Why does this work?

Recall that we require

$$
e(y)=c g(y) \geq f(y) \quad \forall y \in\{y: f(y)>0\} .
$$

Thus,

$$
0 \leq \frac{f(y)}{e(y)}=\frac{f(y)}{c g(y)} \leq 1
$$

The larger the ratio $\frac{f(y)}{c g(y)}$, the more the random variable Y looks like a random variable distributed with pdf f and the more likely Y is to be accepted.
2.4 Additional Resources

See peg. 69-70 of Rizzio for a proof of the validity of the method.

How + choose earclupe (if support is not $[0,1]$):
$y^{y^{+1}}$ (1) start w/ support. of $f . \Rightarrow$ list of potential g^{\prime} s either w/ same support or larger.
(2) plot f to git a sense of the shape. Dry to pick ag from my $1.31 \mathrm{~m} /$ similar shape.
(3) pice c sit. $e g(x) \geqslant f(x) \forall x$.
\rightarrow picking a bunch of c's, plotting $c \cdot g(x)$ vs. $f(x)$
evaluating $c \cdot g(x)$ vs, $f(x)$ at a wide sang of x^{\prime} s,
Choose the smallest \subset I con prat mates $c-g(x) \geq f(x) \quad \forall x$.

3 Transformation Methods

We have already used one transformation method - Inverse transform method - but there are many other transformations we can apply to random variables.

1. If $Z \sim N(0,1)$, then $V=Z^{2} \sim \mathcal{X}_{1}^{2}$
2. If $U \sim \chi_{m}^{2}$ and $V \sim \chi_{n}^{2}$ are independent, then $F=\frac{U / m}{V / n} \sim F_{m, n}$
3. If $Z \sim N(0,1)$ and $V \sim \chi_{n}^{2}$ are independendent, then $T=\frac{Z}{\sqrt{V / n}} \sim t_{n}$
4. If $U \sim \operatorname{Gamma}(r, \lambda)$ and $V \sim \operatorname{Gamma}(s, \lambda)$ are independent, then $X=\frac{U}{U+V} \sim \operatorname{Beta}(r, s)$.
5. If $x \sim F$, then $F^{-1}(x) \sim U_{n i f}(0,1)$. (PITT, leads to in rockirnemod).

$$
x \rightarrow g(x) .
$$

Definition 3.1 A transformation is any function of one or more random variables.
Sometimes we want to transform random variables if observed data don't fit a model that might otherwise be appropriate. Sometimes we want to perform inference about a new statistic.

Example 3.1 If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p)$. What is the distribution of $\sum_{i=1}^{n} X_{i}$?

$$
\text { Con levis } \sum X_{i} \sim \text { Binomial } \operatorname{Cn}, p \text {). }
$$

Example 3.2 If $X \sim N(0,1)$, what is the distribution of $X+5$?

$$
x+5 \sim N(5,1)
$$

Example 3.3 For X_{1}, \ldots, X_{n} id random variables, what is the distribution of the median of X_{1}, \ldots, X_{n} ? What is the distribution of the order statistics? $X_{[i]}$?

This is more complex...
There are many approaches to deriving the pdf of a transformed variable. could then use df in

(D) charge of variable

$10^{0} g$ is monotone, then for ${ }^{(2)}$ cts X add
$y=g(x)$
$f_{y}(y)=\left\{\begin{array}{cc}f_{x}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|, & y \in y \\ 0 & \text { 1.w. }\end{array}\right.$
(2) Moment greasing functions
$M_{x}(t)=E\left(e^{t x}\right)$
$M_{g(x)}(t)=E\left(e^{\operatorname{tg}(x)}\right)$
(3) Convolution Theorem
$z=x+y$

But the theory isn't always available. What can we do?

3.1 Algorithm

Let X_{1}, \ldots, X_{p} be a set of independent random variables with pdfs $f_{X_{1}}, \ldots, f_{X_{p}}$, respectively, and let $g\left(X_{1}, \ldots, X_{p}\right)$ be some transformation we are interested in simulating from.

1. Simulate $X_{1} \sim f_{X_{1}}, \ldots, X_{p} \sim f_{X_{p}}$ aitur straight forward (uaved-distibtion)
2. Compute $G=g\left(X_{1}, \ldots, X_{p}\right)$. This is one draw from $g\left(X_{1}, \ldots, X_{p}\right)$.

$$
\frac{y\left(1, \ldots, \Lambda_{p}\right)}{} \text { tergit distribution. }
$$

3. Repeat Steps 1-2 many times to simulate from the target distribution.
 mine that we cannot use the rchisq function. How would you simulate Z ?
```
(1) Simulate }p\mathrm{ variables from }(0,1)\mathrm{ .
(2) Compute }\sum\mp@subsup{x}{i}{2
(3) Repet (Q)Q mon, thes.
# function for squared r.v.s
squares <- function(x) x^2 # # of r.v.'s(df. of X X)
sample_z <- function(n, p) { iid n draws from p iid N(O,l).
    samples <- data.frame(matrix(rnorm(n*p), nrow = n))
                                    *acclporiject if reussom...
```



```
}
# get samples
n <- 1000 # number of samples
# apply our function over different degrees of freedom
samples <- data.frame(chisq_2 = sample_z(n, 2P=2,
    chisq_5 = sample_z(n, 5),
    chisq_10 = sample_z(n, 10),
```

```
chisq_100 = sample_z(n, 100))
```

```
# plot results
```

samples \%>\%
gather(distribution, sample, everything()) \%>\% \# make easier to
plot w/ facets
separate(distribution, into = c("dsn_name", "df")) \%>\% \# get the df
mutate(df = as.numeric(df)) \%>\% \# make numeric
mutate(pdf $=$ dchisq(sample, df)) $\%>\%$ \# add density function values
ggplot() + \# plot ferenter to plot onte scucscale!
geom_histogram(aes(sample, $y=$..density..)) + \# samples
geom_line(aes(sample, pdf), colour $=$ "red") + \# true pdf in red
facet_wrap(~df, scales = "free")
different scales for ditferent $d f s$.

4 Mixture Distributions

The faithful dataset in R contains data on eruptions of Old Faithful (Geyser in Yellowstone National Park).

```
head(faithful)
```

\#\#	eruptions	waiting
\#\#	1	3.600
\#\# 2	1.800	79
\#\#	3	3.333
\#\# 4	2.283	74
\#\# 5	4.533	82
\#\# 6	2.883	55

```
faithful %>%
        gather(variable, value) %>%
        ggplot() +
        geom_histogram(aes(value), bins = 50) +
        facet_wrap(~variable, scales = "free")
```


What is the shape of these distributions?

> Bimodal , ie. two modes.

Definition 4.1 A random variable Y is a discrete mixture if the distribution of Y is a weighted sum $F_{Y}(y)=\sum \theta_{i} F_{X_{i}}(y)$ for some sequence of random variables X_{1}, X_{2}, \ldots and $\theta_{i}>0$ such that $\sum \theta_{i}=1$.

For 2 r.v.s,

$$
\begin{aligned}
& \theta+(1-\theta)=1 \\
& f_{y}(y)=\theta=\theta f_{x_{1}}(y)+(1-\theta) f_{x_{2}}(y)
\end{aligned}
$$

$T_{\text {two }}$ different distributions

How do we simulate from this distribution?

There are 2 sources of variability.
(1) \rightarrow which distribution to draw from $\left(f_{x_{1}}, f_{x_{2}}\right)$:

$$
Z \sim \operatorname{Bersoulli}(\theta) \rightarrow \begin{cases}z=1 & x \sim f_{x_{1}} \\ z=0 & x \sim f_{x_{2}}\end{cases}
$$

Algorithm:
(1) draw $Z \sim \operatorname{Bernouilli}(\forall)$
(2) if $z=1$, draw $x \sim f_{x_{1}}$
if $z=0$, draw $x \sim f_{X_{2}}$
repeat unary tires.

Example 4.1

```
x <- seq(-5, 25, length.out = 100)
mixture <- function(x, means, sd) { & common sd.
    # x is the vector of points to evaluate the function at
    # means is a vector, sd is a single number
    f <- rep(0, length(x))
    for(mean in means) {
            f <- f + (dnorm(x, mean, sd)/length(means) # why do I divide?
        }
    f
}
equally veighting cads 
    0}=\mp@subsup{0}{2}{}=\mp@subsup{0}{3}{}=\frac{1}{3
# look at mixtures of N(mu, 4) for different values of mu (we don't hore to 
    f3 = mixture(x, c(5, 10, 20), 2),
    f4 = mixture(x, c(1, 10, 20), 2)) %>%
    gather(mixture, value, -x) %>%
    ggplot() +
    geom_line(aes(x, value)) +
    facet_wrap(.~mixture, scales = "free_y")
```


4.1 Mixtures vs. Sums

Note that mixture distributions are not the same as the distribution of a sum of r.v.s.
mixtures acre weighted sons of distributions
NOT distributions $\&$ righted sums of randen variables!

Example 4.2 Let $X_{1} \sim N(0,1)$ and $X_{2} \sim N(4,1)$, independent.
weighted
Sum of r.v.'s called a "Convolution"
$S=\frac{1}{2}\left(X_{1}+X_{2}\right)$

$$
\begin{aligned}
E(S) & =E\left(\frac{1}{2}\left(X_{6}+X_{2}\right)\right) \\
& =\frac{1}{2} E X_{1}+\frac{1}{2} E X_{2}=\frac{1}{2}(0+4)=2
\end{aligned} \quad \begin{aligned}
& \operatorname{Var}(S)=\operatorname{Var}\left(\frac{1}{2}\left(X_{1}+X_{2}\right)\right) \stackrel{\downarrow}{=} \frac{1}{4}\left(\operatorname{Var} X_{1}+\operatorname{Var} X_{2}\right)=\frac{1}{4}(1+1)=\frac{1}{2}
\end{aligned}
$$

Lan show in fact $S=\frac{1}{2}\left(X_{1}+x_{2}\right) \sim N\left(2, \frac{1}{2}\right)$ unimodal, lull shaped.
mixture density.
Z such that $f_{Z}(z)=\frac{0.5}{\theta} f_{X_{1}}(z)+0.5 f_{X_{2}}(z)$.
(1) $\mathrm{n}<-1000$ \# draws
(2) $u<-\operatorname{rbinom}(n, 1$, (5.5) \downarrow choose which den
(3) $u=1$ matchup. with the mixture I wast.
(3) $z<-\mathbb{d} * \operatorname{rnorm}(n)+(1-u) * \operatorname{rnorm}(n, 4,1)$

$$
N(0,1) \quad N(4,1)
$$

(4) ggplot() + geom_histogram(aes(z), bins = 50)

This is NOT a

$$
N\left(2, \frac{1}{v}\right)
$$

What about $f_{Z}(z)=0.7 f_{X_{1}}(z)+0.3 f_{X_{2}}(z)$?
chang line (2) in above code.
$u<\operatorname{rbinom}(n, 1,0.7)$

4.2 Models for Count Data (refresher)

Recall that the Poisson (λ) distribution is useful for modeling count data.

$$
f(x)=\frac{\lambda^{x} \exp \{-\lambda\}}{x!}, \quad x=0,1,2, \ldots
$$

Where $\begin{aligned} \text { riv. }\end{aligned}=$ number of events occuring in a fixed period of time or space. $\quad X \sim p_{\text {bison }}(\lambda)$.
When the mean λ is low, then the data consists of mostly low values (ie. $0,1,2$, etc.) and less frequently higher values.
As the mean count increases, the skewness goes away and the distribution becomes approximately normal.

With the Poisson distribution,

$$
E[X]=\operatorname{Var} X=\lambda \text {. restricts the shape of the } d \text { sn! }
$$

Example 4.3

- \#homes sold per day by a real estate compar
- \& calls coming fer minute into a hotel reservactón call cater
- \# of meows in a 2 minute cal video on joutube.

Example 4.4 The Colorado division of Parks and Wildlife has hired you to analyze their data on the number of fish caught in Horsetooth resevoir by visitors. Each visitor was asked - How long did you stay? - How many fish did you catch? - Other questions: How many people in your group, were children in your group, etc.

Some visiters do not fish, but there is not data on if a visitor fished or not. Some visitors who did fish did not catch any fish.

Note, this is modified from https://stats.idre.ucla.edu/r/dae/zip/.

```
fish <- read_csv("https://stats.idre.ucla.edu/stat/data/fish.csv")
```

```
# with zeroes
ggplot(fish) + geom_histogram(aes(count), binwidth = 1)
```



```
# without zeroes
fish %>%
        filter(count > 0) %>%
        ggplot() +
        geom_histogram(aes(count), binwidth = 1)
```


this may look more like
mate
poisson din (some others).

A zero-inflated model assumes that the zero observations have two different origins structural and sampling zeroes.
\rightarrow when non-zero is Example 4.5 impossible
outcome of a study $=\#$ cows with foot and mouth disease (FMD) per regions is Turkey. \rightarrow structure zero - there are no cows in the region

$$
\longrightarrow \text { sampling zero - cousin region, but not FMD. }
$$

key point: you don't know whether region has no cons or no disease.
A zero-inflated model is a mixture model because the distribution is a weighted average of the sampling model (i.e. Poisson) and a point-mass at 0 . distribution for structural zeros.
For $Y \sim Z I P(\lambda)$,

$$
Y \sim \begin{cases}0 & \text { with probability } \pi \\ \operatorname{Poisson}(\lambda) & \text { with probability } 1-\pi\end{cases}
$$

So that,

$$
Y=\left\{\begin{array}{lll}
0 & \text { w. } & \pi+(1-\pi) e(-\lambda) \\
k & \text { w.p. } & (1-\pi) \frac{\lambda^{k} e(-\lambda)}{k!} \quad k=1,2, \ldots
\end{array}\right.
$$

To simulate from this distribution,

$$
\begin{array}{ll}
z \sim \operatorname{Bern}(\pi) \\
\text { if } z=0 & y \sim \operatorname{Poisson}(\lambda) \\
\text { if } z=1 & y=0 .
\end{array}
$$

```
n <- 1000
lambda <- 5
pi <- 0.3
u <- rbinom(n, 1, pi)
zip <- u*0 + (1-u)*rpois(n, lambda)
```

```
# zero inflated model
ggplot() + geom_histogram(aes(zip), binwidth = 1)
```


\# Poisson(5)

```
ggplot() + geom_histogram(aes(rpois(n, lambda)), binwidth = 1)
```


