
Chapter 3: Methods for Simulating Data
Statisticians (and other users of data) need to simulate data for many reasons.

For example, I simulate as a way to check whether a model is appropriate. If the observed
data are similar to the data I generated, then this is one way to show my model may be a
good one.

It is also sometimes useful to simulate data from a distribution when I need to estimate an
expected value (approximate an integral).

R can already generate data from many (named) distributions:

##  [1] -1.0365488  0.6152833  1.4729326 -0.6826873 -0.6018386 -1.3526097 
##  [7]  0.8607387  0.7203705  0.1078532 -0.5745512

##  [1] -4.5092359  0.4464354 -7.9689786 -0.4342956 -5.8546081  2.7596877 
##  [7] -3.2762745 -2.1184014  2.8218477 -5.0927654

##  [1] 0.67720831 0.04377997 5.38745038 0.48773005 1.18690322 0.92734297 
##  [7] 0.33936255 0.99803323 0.27831305 0.94257810

But what about when we don’t have a function to do it?

set.seed(400) #reproducibility

rnorm(10) # 10 observations of a N(0,1) r.v.

rnorm(10, 0, 5) # 10 observations of a N(0,5^2) r.v.

rexp(10) # 10 observations from an Exp(1) r.v.

→ Goodness of fit test.
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↳ we will need to write our own functions to simulate draws from other distributions.
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1 Inverse Transform Method
Theorem 1.1 (Probability Integral Transform) If  is a continuous r.v. with cdf , then 

.

This leads to to the following method for simulating data.

Inverse Transform Method:

First, generate  from Uniform . Then,  is a realization from .

Note: 

1.1 Algorithm

1. Derive the inverse function . 

2. Write a function to compute . 

3. For each realization,
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Example 1.1 Simulate a random sample of size  from the pdf .

1. 

2. 

3. 

1.2 Discrete RVs

If  is a discrete random variable and  are the points of discontinuity
of , then the inverse transform is  where . This
leads to the following algorithm:

1. Generate a r.v.  from Unif .

2. Select  where .

# write code for inverse transform example
# f_X(x) = 3x^2, 0 <= x \<= 1
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Example 1.2 Generate 1000 samples from the following discrete distribution.

x 1.0 2.0 3.0
f 0.1 0.2 0.7

x <- 1:3
p <- c(0.1, 0.2, 0.7)

# write code to sample from discrete dsn
n <- 1000
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There is a really simple way to do this in R
.

using sample

* remember to allow replacement and specify the prob. vector.
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2 Acceptance-Reject Method
The goal is to generate realizations from a target density, .

Most cdfs cannot be inverted in closed form.

The Acceptance-Reject (or “Accept-Reject”) samples from a distribution that is similar to 
 and then adjusts by only accepting a certain proportion of those samples.

The method is outlined below:

Let  denote another density from which we know how to sample and we can easily calcu-
late .

Let  denote an envelope, having the property  for all 
 for a given constant .

The Accept-Reject method then follows by sampling  and .

If , accept . Set  and consider  to be an element of the target
random sample.

Note:  is the expected proportion of candidates that are accepted.

2.1 Algorithm

1. Find a suitable density  and envelope .

2. Sample .

3. Sample .

4. If , accept .

5. Repeat from Step 2 until you have generated your desired sample size.

Something we can
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2.2 Envelopes

Good envelopes have the following properties:

A simple approach to nding the envelope:
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Example 2.1 We want to generate a random variable with pdf , 
. This is a Beta  distribution.

Can we invert  analytically?

If not, �nd the maximum of .

# pdf function, could use dbeta() instead
f <- function(x) {
    60*x^3*(1-x)^2
}

# plot pdf
x <- seq(0, 1, length.out = 100)
ggplot() +
  geom_line(aes(x, f(x)))
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-
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envelope <- function(x) {
  ## create the envelope function
}

# Accept reject algorithm
n <- 1000 # number of samples wanted
accepted <- 0 # number of accepted samples
samples <- rep(NA, n) # store the samples here

while(accepted < n) {
  # sample y from g
  
  # sample u from uniform(0,1)
  u <- runif(1)
  
  if(u < f(y)/envelope(y)) {
    # accept
    accepted <- accepted + 1
    samples[accepted] <- y
  }
}

ggplot() +
  geom_histogram(aes(sample, y = ..density..), bins = 50, ) +
  geom_line(aes(x, f(x)), colour = "red") +
  xlab("x") + ylab("f(x)")

← c -
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#
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2.3 Why does this work?

Recall that we require

Thus,

The larger the ratio , the more the random variable  looks like a random variable
distributed with pdf  and the more likely  is to be accepted.

2.4 Additional Resources

See p.g. 69-70 of Rizzo for a proof of the validity of the method.
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3 Transformation Methods
We have already used one transformation method – Inverse transform method – but there
are many other transformations we can apply to random variables.

1. If , then 

2. If  and  are independent, then 

3. If  and  are independendent, then 

4. If  and  are independent, then 

De nition 3.1 A transformation is any function of one or more random variables.

Sometimes we want to transform random variables if observed data don’t t a model that
might otherwise be appropriate. Sometimes we want to perform inference about a new
statistic.

Example 3.1 If . What is the distribution of ?

Example 3.2 If , what is the distribution of ?

Example 3.3 For  iid random variables, what is the distribution of the median
of ? What is the distribution of the order statistics? ?

There are many approaches to deriving the pdf of a transformed variable.
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But the theory isn’t always available. What can we do?

3.1 Algorithm

Let  be a set of independent random variables with pdfs , respec-
tively, and let  be some transformation we are interested in simulating from.

1. Simulate .

2. Compute . This is one draw from .

3. Repeat Steps 1-2 many times to simulate from the target distribution.

Example 3.4 It is possible to show for , . Imag-
ine that we cannot use the rchisq function. How would you simulate ?

library(tidyverse)

# function for squared r.v.s
squares <- function(x) x^2

sample_z <- function(n, p) {
  # store the samples
  samples <- data.frame(matrix(rnorm(n*p), nrow = n))

  samples %>% 
    mutate_all("squares") %>% # square the rvs
    rowSums() # sum over rows
}

# get samples
n <- 1000 # number of samples

# apply our function over different degrees of freedom
samples <- data.frame(chisq_2 = sample_z(n, 2),
                      chisq_5 = sample_z(n, 5),
                      chisq_10 = sample_z(n, 10),
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                      chisq_100 = sample_z(n, 100))

# plot results
samples %>%
  gather(distribution, sample, everything()) %>% # make easier to 
plot w/ facets

  separate(distribution, into = c("dsn_name", "df")) %>% # get the df
  mutate(df = as.numeric(df)) %>% # make numeric
  mutate(pdf = dchisq(sample, df)) %>% # add density function values 
  ggplot() + # plot
  geom_histogram(aes(sample, y = ..density..)) + # samples
  geom_line(aes(sample, pdf), colour = "red") + # true pdf
  facet_wrap(~df, scales = "free")
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4 Mixture Distributions

The faithful dataset in R contains data on eruptions of Old Faithful (Geyser in Yellow-

stone National Park).

##   eruptions waiting 
## 1     3.600      79 
## 2     1.800      54 
## 3     3.333      74 
## 4     2.283      62 
## 5     4.533      85 
## 6     2.883      55

What is the shape of these distributions?

head(faithful)

faithful %>%
  gather(variable, value) %>%
  ggplot() +
  geom_histogram(aes(value), bins = 50) +
  facet_wrap(~variable, scales = "free")
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De nition 4.1 A random variable  is a discrete mixture if the distribution of  is a
weighted sum  for some sequence of random variables  and 

 such that .

For  r.v.s,



4.1 Mixtures vs. Sums 15

Example 4.1

4.1 Mixtures vs. Sums

Note that mixture distributions are not the same as the distribution of a sum of r.v.s.

x <- seq(-5, 25, length.out = 100)

mixture <- function(x, means, sd) {
  # x is the vector of points to evaluate the function at
  # means is a vector, sd is a single number
  f <- rep(0, length(x))
  for(mean in means) { 
    f <- f + dnorm(x, mean, sd)/length(means) # why do I divide?
  }
  f
}

# look at mixtures of N(mu, 4) for different values of mu
data.frame(x, 
           f1 = mixture(x, c(5, 10, 15), 2), 
           f2 = mixture(x, c(5, 6, 7), 2),
           f3 = mixture(x, c(5, 10, 20), 2),
           f4 = mixture(x, c(1, 10, 20), 2)) %>%
  gather(mixture, value, -x) %>%
  ggplot() +
  geom_line(aes(x, value)) +
  facet_wrap(.~mixture, scales = "free_y")
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Example 4.2 Let  and , independent.

 such that .

What about ?

n <- 1000
u <- rbinom(n, 1, 0.5)

z <- u*rnorm(n) + (1 - u)*rnorm(n, 4, 1)

ggplot() +
  geom_histogram(aes(z), bins = 50)
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4.2 Models for Count Data (refresher)

Recall that the Poisson  distribution is useful for modeling count data.

Where  number of events occuring in a xed period of time or space.

When the mean  is low, then the data consists of mostly low values (i.e. , etc.) and
less frequently higher values.

As the mean count increases, the skewness goes away and the distribution becomes ap-
proximately normal.

With the Poisson distribution,

Example 4.3

Example 4.4 The Colorado division of Parks and Wildlife has hired you to analyze their
data on the number of sh caught in Horsetooth resevoir by visitors. Each visitor was
asked - How long did you stay? - How many sh did you catch? - Other questions: How
many people in your group, were children in your group, etc.

Some visiters do not sh, but there is not data on if a visitor shed or not. Some visitors
who did sh did not catch any sh.

Note, this is modi ed from https://stats.idre.ucla.edu/r/dae/zip/.

fish <- read_csv("https://stats.idre.ucla.edu/stat/data/fish.csv")
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# with zeroes
ggplot(fish) + geom_histogram(aes(count), binwidth = 1)

# without zeroes
fish %>%
  filter(count > 0) %>%
  ggplot() + 
  geom_histogram(aes(count), binwidth = 1)
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A zero-in�ated model assumes that the zero observations have two different origins –
structural and sampling zeroes.

Example 4.5

A zero-in�ated model is a mixture model because the distribution is a weighted average of
the sampling model (i.e. Poisson) and a point-mass at .

For ,

So that,

To simulate from this distribution,

n <- 1000
lambda <- 5
pi <- 0.3

u <- rbinom(n, 1, pi)
zip <- u*0 + (1-u)*rpois(n, lambda)
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# zero inflated model
ggplot() + geom_histogram(aes(zip), binwidth = 1)

# Poisson(5)
ggplot() + geom_histogram(aes(rpois(n, lambda)), binwidth = 1)


