
Chapter 3: Methods for Simulating Data
Statisticians (and other users of data) need to simulate data for many reasons.

For example, I simulate as a way to check whether a model is appropriate. If the observed
data are similar to the data I generated, then this is one way to show my model may be a
good one.

It is also sometimes useful to simulate data from a distribution when I need to estimate an
expected value (approximate an integral).

R can already generate data from many (named) distributions:

[1] -1.0365488 0.6152833 1.4729326 -0.6826873 -0.6018386 -1.3526097
[7] 0.8607387 0.7203705 0.1078532 -0.5745512

[1] -4.5092359 0.4464354 -7.9689786 -0.4342956 -5.8546081 2.7596877
[7] -3.2762745 -2.1184014 2.8218477 -5.0927654

[1] 0.67720831 0.04377997 5.38745038 0.48773005 1.18690322 0.92734297
[7] 0.33936255 0.99803323 0.27831305 0.94257810

But what about when we don’t have a function to do it?

set.seed(400) #reproducibility

rnorm(10) # 10 observations of a N(0,1) r.v.

rnorm(10, 0, 5) # 10 observations of a N(0,5^2) r.v.

rexp(10) # 10 observations from an Exp(1) r.v.

→ Goodness of fit test.

-

-
Chas

-

→ set starting point for
pseudo random

number generator
⇒ reprograms.

-1
I

sd.
I

÷
÷

↳ we will need to write our own functions to simulate draws from other distributions.

2

1 Inverse Transform Method
Theorem 1.1 (Probability Integral Transform) If is a continuous r.v. with cdf , then

.

This leads to to the following method for simulating data.

Inverse Transform Method:

First, generate from Uniform . Then, is a realization from .

Note:

1.1 Algorithm

1. Derive the inverse function .

2. Write a function to compute .

3. For each realization,

a.

b.

easiest method
whenitw

-

a Folk)

µj%"Tisane was,
";u7

""

- su

-

FI
,

may not be available in closed form. If that's the case, use something else .

To do this
,

let Fx (x) = u then solve for x to

- find x= FI (u) .

in R -

simulated value .

generate a randomEhf from lnif Co
,
i)

compute ④ Itu)
tginwlated draw from Fx 64.

1.2 Discrete RVs 3

Example 1.1 Simulate a random sample of size from the pdf .

1.

2.

3.

1.2 Discrete RVs

If is a discrete random variable and are the points of discontinuity
of , then the inverse transform is where . This
leads to the following algorithm:

1. Generate a r.v. from Unif .

2. Select where .

write code for inverse transform example
f_X(x) = 3x^2, 0 <= x \<= 1

-

• find the cdf Fx
O x to

fly = 5%3y' dy = y' fo" ={x3 x Eco, D .
A X 71.

I find fair
u = Efx) =x3 ⇒ u

"
= x -- FIH .

so Ff la) = u" for o E u E N

a

range of Efx).

*.

a) Write function for E
'

b) sample u valves from Un
'if lo

,
i)

c) evaluate z=fIcu) .] 1000 lines.

✓ jumps .

-

F
-

jump point

t

O.
O

T -

jap point

Fx
feed
"'

• - q-

o.su#-------iiia, earn '

a. a. in

! I sample.

IT
xX

, 202 2C
,

4 1 Inverse Transform Method

Example 1.2 Generate 1000 samples from the following discrete distribution.

x 1.0 2.0 3.0
f 0.1 0.2 0.7

x <- 1:3
p <- c(0.1, 0.2, 0.7)

write code to sample from discrete dsn
n <- 1000

Fath
or

"
- -- - - ' " "ILL?

oi ÷ .-

pint or ÷ .-o

s:-#x

A 2 3

There is a really simple way to do this in R
.

using sample

* remember to allow replacement and specify the prob. vector.

5

2 Acceptance-Reject Method
The goal is to generate realizations from a target density, .

Most cdfs cannot be inverted in closed form.

The Acceptance-Reject (or “Accept-Reject”) samples from a distribution that is similar to
 and then adjusts by only accepting a certain proportion of those samples.

The method is outlined below:

Let denote another density from which we know how to sample and we can easily calcu-
late .

Let denote an envelope, having the property for all
 for a given constant .

The Accept-Reject method then follows by sampling and .

If , accept . Set and consider to be an element of the target
random sample.

Note: is the expected proportion of candidates that are accepted.

2.1 Algorithm

1. Find a suitable density and envelope .

2. Sample .

3. Sample .

4. If , accept .

5. Repeat from Step 2 until you have generated your desired sample size.

Something we can

I
try when we

can 't find F
'

(in closed form)

v

three III.
'It's:# am.

O
-

T -

forget and rejecting the rest.

go .

②
←

requirements
An

①

target
←

the envelope covers

d all of f
-

0

This implies that the support of gc.) MUST INCLUDEsupport of target ③ the support off!

O
what might be hardflow?

① (glow) - depending on efficiency,
we might have to drawwe can use uthis to evaluate the efficiency of our algorithm .

alot of sample just

keep a few.

Glow) - could be slowto evaluatef

Chard) - choose g
t c

hasiedp ①
proposal

slow
slept

"Yep . -

* Requirement : the support of g MUST INCLUDE the support of f *

(BAD) example : tf
f INCoit auf g

I Umfflo , lol .

This would not be appropriate because support off is C-X , ins) and support of g is Eb, 10] .

6 2 Acceptance-Reject Method

2.2 Envelopes

Good envelopes have the following properties:

A simple approach to nding the envelope:

Hi=• - rejected

• ftd . rejected

eG4=cgGd .ve•
- fuel

y Ng u

support of g
must

include support off

choose c
to make

this ① happen .
① envelope exceeds target everywhere ←

② Easy to sample from g .

③ Generate few rejected draws (save time) .

ways
¢
in some CASI

.

.

- . . .
.

.this
"

works r
,

vii.µ . say in support off is¥aoex
"
" '

* ok h
Find mgcxfffxl) and let c-- mgyfflx))[

support of g
maths

he

let glx) I Uniflo , 1)
= {

1 if Kt GD support off
V T

O otrerwise This is often not efficient

If you know more about the shape
etc) = cglx) off you can select a better

envelope.

Plotting is your
friend here !

2.2 Envelopes 7

Example 2.1 We want to generate a random variable with pdf ,
. This is a Beta distribution.

Can we invert analytically?

If not, �nd the maximum of .

pdf function, could use dbeta() instead
f <- function(x) {
 60*x^3*(1-x)^2
}

plot pdf
x <- seq(0, 1, length.out = 100)
ggplot() +
 geom_line(aes(x, f(x)))

-

-
↳ could just use rbetac) in R.

No .
let 's use accept - reject !

=c let off Unit Con) .

f-
'

Cx) = 60/3×41 -x)' - 2×3 (i - x))

I :O :c:::*: ÷:÷i÷÷
q= Maxx

FGC) - f- (Z) = 2.0736
density for beta

O
-

y
µa*e

scram'
ow

.

re
..
.

"
""
"

← f evaluated at
x valves

T
line .

"

I
,

i
' t
l
,

E
Sls

8 2 Acceptance-Reject Method

envelope <- function(x) {
 ## create the envelope function
}

Accept reject algorithm
n <- 1000 # number of samples wanted
accepted <- 0 # number of accepted samples
samples <- rep(NA, n) # store the samples here

while(accepted < n) {
 # sample y from g

 # sample u from uniform(0,1)
 u <- runif(1)

 if(u < f(y)/envelope(y)) {
 # accept
 accepted <- accepted + 1
 samples[accepted] <- y
 }
}

ggplot() +
 geom_histogram(aes(sample, y = ..density..), bins = 50,) +
 geom_line(aes(x, f(x)), colour = "red") +
 xlab("x") + ylab("f(x)")

← c -
unit pdf

= c. A

= fels)

#
we don't know how many iterations it will take⇒ for loop not helpful.

run loop until we have accepted enough (n).

Y t runif Cq.
① unitCod)

←
increment accepted

so loop ends
eventually .

store samples .

necessary
so
that

histogram
is
on
the

same
scale

as
the

density

function
instead of

raw
counts.

in:#no::¥m÷
s-1

worth →
or

pdt

2.3 Why does this work? 9

2.3 Why does this work?

Recall that we require

Thus,

The larger the ratio , the more the random variable looks like a random variable
distributed with pdf and the more likely is to be accepted.

2.4 Additional Resources

See p.g. 69-70 of Rizzo for a proof of the validity of the method.

ely) =

not msouoh room cuts of room
for U. I for U

o ± Had = FEI E I p#-
clip ugly) 0 fly, fly) M

-
-

aged coyly)

←
should be a copy w/ library .

-

How to choose envelope (if support is not com) :

unaided!'m①start w/ support . off . ⇒ list of potential g's either w/ same support on larger.

(with

my ② plot f to get a mute af the shape . Try to pick a g
from my

list ar similar shape.

Ma WH .

P

③ pick a sit . Egad ? fuel Vx .

↳ picking a bunch of c's , plotz caging us . fix)

quaky o - gap rs . the) at a wide wrongs of x's.

choose the smallest c I can that makes c- ghc) Z f-Cx) Az.

find -

r I
u:c:÷..

I I

a-
0 a

10

3 Transformation Methods
We have already used one transformation method – Inverse transform method – but there
are many other transformations we can apply to random variables.

1. If , then

2. If and are independent, then

3. If and are independendent, then

4. If and are independent, then

De nition 3.1 A transformation is any function of one or more random variables.

Sometimes we want to transform random variables if observed data don’t t a model that
might otherwise be appropriate. Sometimes we want to perform inference about a new
statistic.

Example 3.1 If . What is the distribution of ?

Example 3.2 If , what is the distribution of ?

Example 3.3 For iid random variables, what is the distribution of the median
of ? What is the distribution of the order statistics? ?

There are many approaches to deriving the pdf of a transformed variable.

x:

F
Min

t
h

5. tf XNF
,
then F'(x) n Unifcoa). (pit

,
lead, , i. www.#empned1.

Betawi s) -

X → gun .

Can denim EXin Binomial Crypt .

Xts - NCS, D .

This is more complex . . .

3.1 Algorithm 11

But the theory isn’t always available. What can we do?

3.1 Algorithm

Let be a set of independent random variables with pdfs , respec-
tively, and let be some transformation we are interested in simulating from.

1. Simulate .

2. Compute . This is one draw from .

3. Repeat Steps 1-2 many times to simulate from the target distribution.

Example 3.4 It is possible to show for , . Imag-
ine that we cannot use the rchisq function. How would you simulate ?

library(tidyverse)

function for squared r.v.s
squares <- function(x) x^2

sample_z <- function(n, p) {
 # store the samples
 samples <- data.frame(matrix(rnorm(n*p), nrow = n))

 samples %>%
 mutate_all("squares") %>% # square the rvs
 rowSums() # sum over rows
}

get samples
n <- 1000 # number of samples

apply our function over different degrees of freedom
samples <- data.frame(chisq_2 = sample_z(n, 2),
 chisq_5 = sample_z(n, 5),
 chisq_10 = sample_z(n, 10),

12 3 Transformation Methods

 chisq_100 = sample_z(n, 100))

plot results
samples %>%
 gather(distribution, sample, everything()) %>% # make easier to
plot w/ facets

 separate(distribution, into = c("dsn_name", "df")) %>% # get the df
 mutate(df = as.numeric(df)) %>% # make numeric
 mutate(pdf = dchisq(sample, df)) %>% # add density function values
 ggplot() + # plot
 geom_histogram(aes(sample, y = ..density..)) + # samples
 geom_line(aes(sample, pdf), colour = "red") + # true pdf
 facet_wrap(~df, scales = "free")

13

4 Mixture Distributions

The faithful dataset in R contains data on eruptions of Old Faithful (Geyser in Yellow-

stone National Park).

eruptions waiting
1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55

What is the shape of these distributions?

head(faithful)

faithful %>%
 gather(variable, value) %>%
 ggplot() +
 geom_histogram(aes(value), bins = 50) +
 facet_wrap(~variable, scales = "free")

14 4 Mixture Distributions

De nition 4.1 A random variable is a discrete mixture if the distribution of is a
weighted sum for some sequence of random variables and

 such that .

For r.v.s,

4.1 Mixtures vs. Sums 15

Example 4.1

4.1 Mixtures vs. Sums

Note that mixture distributions are not the same as the distribution of a sum of r.v.s.

x <- seq(-5, 25, length.out = 100)

mixture <- function(x, means, sd) {
 # x is the vector of points to evaluate the function at
 # means is a vector, sd is a single number
 f <- rep(0, length(x))
 for(mean in means) {
 f <- f + dnorm(x, mean, sd)/length(means) # why do I divide?
 }
 f
}

look at mixtures of N(mu, 4) for different values of mu
data.frame(x,
 f1 = mixture(x, c(5, 10, 15), 2),
 f2 = mixture(x, c(5, 6, 7), 2),
 f3 = mixture(x, c(5, 10, 20), 2),
 f4 = mixture(x, c(1, 10, 20), 2)) %>%
 gather(mixture, value, -x) %>%
 ggplot() +
 geom_line(aes(x, value)) +
 facet_wrap(.~mixture, scales = "free_y")

16 4 Mixture Distributions

Example 4.2 Let and , independent.

 such that .

What about ?

n <- 1000
u <- rbinom(n, 1, 0.5)

z <- u*rnorm(n) + (1 - u)*rnorm(n, 4, 1)

ggplot() +
 geom_histogram(aes(z), bins = 50)

4.2 Count Data 17

4.2 Models for Count Data (refresher)

Recall that the Poisson distribution is useful for modeling count data.

Where number of events occuring in a xed period of time or space.

When the mean is low, then the data consists of mostly low values (i.e. , etc.) and
less frequently higher values.

As the mean count increases, the skewness goes away and the distribution becomes ap-
proximately normal.

With the Poisson distribution,

Example 4.3

Example 4.4 The Colorado division of Parks and Wildlife has hired you to analyze their
data on the number of sh caught in Horsetooth resevoir by visitors. Each visitor was
asked - How long did you stay? - How many sh did you catch? - Other questions: How
many people in your group, were children in your group, etc.

Some visiters do not sh, but there is not data on if a visitor shed or not. Some visitors
who did sh did not catch any sh.

Note, this is modi ed from https://stats.idre.ucla.edu/r/dae/zip/.

fish <- read_csv("https://stats.idre.ucla.edu/stat/data/fish.csv")

18 4 Mixture Distributions

with zeroes
ggplot(fish) + geom_histogram(aes(count), binwidth = 1)

without zeroes
fish %>%
 filter(count > 0) %>%
 ggplot() +
 geom_histogram(aes(count), binwidth = 1)

4.2 Count Data 19

A zero-in�ated model assumes that the zero observations have two different origins –
structural and sampling zeroes.

Example 4.5

A zero-in�ated model is a mixture model because the distribution is a weighted average of
the sampling model (i.e. Poisson) and a point-mass at .

For ,

So that,

To simulate from this distribution,

n <- 1000
lambda <- 5
pi <- 0.3

u <- rbinom(n, 1, pi)
zip <- u*0 + (1-u)*rpois(n, lambda)

20 4 Mixture Distributions

zero inflated model
ggplot() + geom_histogram(aes(zip), binwidth = 1)

Poisson(5)
ggplot() + geom_histogram(aes(rpois(n, lambda)), binwidth = 1)

