
Chapter 3¯ Methods for Simulating Data
Statisticians Áand other users of dataÂ need to simulate data for many reasonsµ

For example° I simulate as a way to check whether a model is appropriateµ If the observed
data are similar to the data I generated° then this is one way to show my model may be a
good oneµ

It is also sometimes useful to simulate data from a distribution when I need to estimate an
expected value Áapproximate an integralÂµ

R can already generate data from many ÁnamedÂ distributions¯

##  [1] -1.0365488  0.6152833  1.4729326 -0.6826873 -0.6018386 -1.3526097 
##  [7]  0.8607387  0.7203705  0.1078532 -0.5745512

##  [1] -4.5092359  0.4464354 -7.9689786 -0.4342956 -5.8546081  2.7596877 
##  [7] -3.2762745 -2.1184014  2.8218477 -5.0927654

##  [1] 0.67720831 0.04377997 5.38745038 0.48773005 1.18690322 0.92734297 
##  [7] 0.33936255 0.99803323 0.27831305 0.94257810

But what about when we donÏt have a function to do it¶

VeW.Veed(400) #UeSURdXcLbLOLW\

UnoUm(10) # 10 RbVeUYaWLRQV Rf a N(0,1) U.Y.

UnoUm(10, 0, 5) # 10 RbVeUYaWLRQV Rf a N(0,5^2) U.Y.

Ue[S(10) # 10 RbVeUYaWLRQV fURP aQ E[S(1) U.Y.

→ Goodness of fit test.
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↳ we will need to write our own functions to simulate draws from other distributions.



�

� Inverse Transform Method
Theorem �µ� ÁProbability Integral TransformÂ If  is a continuous rµvµ with cdf ° then 

µ

This leads to to the following method for simulating dataµ

Inverse Transform Method¯

First° generate  from Uniform µ Then°  is a realization from µ

Note¯ 

�µ� Algorithm

�µ Derive the inverse function µ 

�µ Write a function to compute µ 

�µ For each realization°
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may not be available in closed form. If that's the case, use something else .

To do this
,

let Fx (x) = u then solve for x to

- find x= FI (u) .

in R -

simulated value .
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�µ� Discrete RVs �

Example �µ� Simulate a random sample of size  from the pdf µ

�µ 

�µ 

�µ 

�µ� Discrete RVs

If  is a discrete random variable and  are the points of discontinuity
of ° then the inverse transform is  where µ This
leads to the following algorithm¯

�µ Generate a rµvµ  from Unif µ

�µ Select  where µ

# ZULWe cRde fRU LQYeUVe WUaQVfRUP e[aPSOe
# f_X([) = 3[^2, 0 <= [ \<= 1
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4 1 Inverse Transform Method

Example 1µ2 Generate 1000 samples from the following discrete distributionµ

x 1µ0 2µ0 3µ0
f 0µ1 0µ2 0µ�

[ <- 1:3
S <- c(0.1, 0.2, 0.7)

# ZULWe cRde WR VaPSOe fURP dLVcUeWe dVQ
Q <- 1000
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There is a really simple way to do this in R
.

using sample

* remember to allow replacement and specify the prob. vector.



�

� AcceptanceÅReject Method
The goal is to generate realizations from a target densitw° µ

Most cdfs cannot be inverted in closed formµ

The AcceptanceÅReject Áor ÌAcceptÅRejectÍÂ samples from a distribution that is similar to 
 and then adjusts bw onlw accepting a certain proportion of those samplesµ

The method is outlined below¯

Let  denote another densitw from which we know how to sample and we can easilw calcuÅ
late µ

Let  denote an envelope° having the propertw  for all 
 for a given constant µ

The AcceptÅReject method then follows bw sampling  and µ

If ° accept µ Set  and consider  to be an element of the target
random sampleµ

Note¯  is the evpected proportion of candidates that are acceptedµ

�µ� Algorithm

�µ Find a suitable densitw  and envelope µ

�µ Sample µ

�µ Sample µ

�µ If ° accept µ

�µ Repeat from Step � until wou have generated wour desired sample sizeµ

Something we can

I
try when we

can 't find F
'

( in closed form)
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forget and rejecting the rest.
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This implies that the support of gc.) MUST INCLUDEsupport of target ③ the support off!

O
what might be hardflow?

① (glow) - depending on efficiency,
we might have to drawwe can use uthis to evaluate the efficiency of our algorithm .

alot of sample just

keep a few.

Glow) - could be slowto evaluatef

Chard) - choose g
t c

hasiedp ①
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slow
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"Yep . -

* Requirement : the support of g MUST INCLUDE the support of f *

(BAD) example : tf
f INCoit auf g

I Umfflo , lol .

This would not be appropriate because support off is C-X , ins) and support of g is Eb, 10] .



� � Accehna^ceÅRejecn Menh`d

�µ� E^tel`hel

G``d e^tel`hel hate nhe f`ll`ui^g hk`hekniel¯

A li]hle ahhk`ach n` {^di^g nhe e^tel`he¯
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Plotting is your
friend here !



2µ2 Envelopes �

Example 2µ1 We want to generate a random variable with pdf ° 
µ This is a Beta  distributionµ

Can we invert  analytically¶

If not° �nd the maximum of µ

# Sdf fXQcWLRQ, cRXOd XVe dbeWa() LQVWead
I <- fXncWion([) ^
    60*[^3*(1-[)^2
`

# SORW Sdf
[ <- VeT(0, 1, OHQJWK.RXW = 100)
ggSloW() +
  geom_line(aeV([, f([)))

-

-
↳ could just use rbetac ) in R.

No .
let 's use accept - reject !
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8 2 AcceptanceÅReject Method

HQYHORSH <- fXncWion([) ^
  ## cUeaWe WKe eQYeORSe fXQcWLRQ
`

# AcceSW UeMecW aOgRULWKP
Q <- 1000 # QXPbeU Rf VaPSOeV ZaQWed
DFFHSWHG <- 0 # QXPbeU Rf acceSWed VaPSOeV
VDPSOHV <- UeS(NA, Q) # VWRUe WKe VaPSOeV KeUe

Zhile(DFFHSWHG < Q) ^
  # VaPSOe \ fURP g
  
  # VaPSOe X fURP XQLfRUP(0,1)
  X <- UXnif(1)
  
  if(X < f(\)/enYeloSe(\)) ^
    # acceSW
    DFFHSWHG <- DFFHSWHG + 1
    VDPSOHV[DFFHSWHG] <- \
  `
`

ggSloW() +
  geom_hiVWogUam(aeV(VDPSOH, \ = ..GHQVLW\..), ELQV = 50, ) +
  geom_line(aeV([, f([)), FRORXU = "UHG") +
  [lab("[") + \lab("I([)")

← c -
unit pdf

= c. A

= fels )

#
we don't know how many iterations it will take⇒ for loop not helpful.

run loop until we have accepted enough (n ).

Y t runif Cq.
① unitCod)

←
increment accepted

so loop ends
eventually .

store samples .

necessary
so
that
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on
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the
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instead of
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counts.
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2µ� Why does this work¶ �

2µ� Why does this work¶

Recall that we require

Thus°

The larger the ratio ° the more the random variable  looks like a random variable
distributed with pdf  and the more likely  is to be acceptedµ

2µ� Additional Resources

See pµgµ ��Å�0 of Rizzo for a proof of the validity of the methodµ
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��

� Transformation Methods
We have already used one transformation method Ä Inverse transform method Ä but there
are many other transformations we can apply to random variablesµ

�µ If ° then 

�µ If  and  are independent° then 

�µ If  and  are independendent° then 

�µ If  and  are independent° then 

De{nition �µ� A transformation is any function of one or more random variablesµ

Sometimes we want to transform random variables if observed data donÏt {t a model that
might otherwise be appropriateµ Sometimes we want to perform inference about a new
statisticµ

Example �µ� If µ What is the distribution of ¶

Example �µ� If ° what is the distribution of ¶

Example �µ� For  iid random variables° what is the distribution of the median
of ¶ What is the distribution of the order statistics¶ ¶

There are many approaches to deriving the pdf of a transformed variableµ

x:

F
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t
h

5. tf XNF
,
then F'(x) n Unifcoa). ( pit

,
lead, , i. www.#empned1.

Betawi s) -

X → gun .

Can denim EXin Binomial Crypt .

Xts - NCS, D .

This is more complex . . .



�µ� Algorithm ��

But the theorw isnÏt alwaws availableµ What can we do¶

�µ� Algorithm

Let  be a set of independent random variables with pdfs ° respecÅ
tivelw° and let  be some transformation we are interested in simulating fromµ

�µ Simulate µ

�µ Compute µ This is one draw from µ

�µ Repeat Steps �Å� manw times to simulate from the target distributionµ

Evample �µ� It is possible to show for ° µ ImagÅ
ine that we cannot use the UFKLVT functionµ How would wou simulate ¶

libUaU\(WLG\YHUVH)

# fXQcWLRQ fRU VTXaUed U.Y.V
VTXDUHV <- fXncWion([) [^2

VDPSOHB] <- fXncWion(Q, S) ^
  # VWRUe WKe VaPSOeV
  VDPSOHV <- daWa.fUame(maWUi[(UnoUm(Q*S), QURZ = Q))

  VDPSOHV %>% 
    mXWaWe_all("VTXDUHV") %>% # VTXaUe WKe UYV
    UoZSXmV() # VXP RYeU URZV
`

# geW VaPSOeV
Q <- 1000 # QXPbeU Rf VaPSOeV

# aSSO\ RXU fXQcWLRQ RYeU dLffeUeQW degUeeV Rf fUeedRP
VDPSOHV <- daWa.fUame(FKLVTB2 = VamSle_](Q, 2),
                      FKLVTB5 = VamSle_](Q, 5),
                      FKLVTB10 = VamSle_](Q, 10),



1� � Transformation Methods

                      FKLVTB100 = VamSle_](Q, 100))

# SORW UeVXOWV
VDPSOHV %>%
  gaWheU(GLVWULEXWLRQ, VDPSOH, eYeU\Whing()) %>% # PaNe eaVLeU WR 
SORW Z/ faceWV

  VeSaUaWe(GLVWULEXWLRQ, LQWR = c("GVQBQDPH", "GI")) %>% # geW WKe df
  mXWaWe(GI = aV.nXmeUic(GI)) %>% # PaNe QXPeULc
  mXWaWe(SGI = dchiVT(VDPSOH, GI)) %>% # add deQVLW\ fXQcWLRQ YaOXeV 
  ggSloW() + # SORW
  geom_hiVWogUam(aeV(VDPSOH, \ = ..GHQVLW\..)) + # VaPSOeV
  geom_line(aeV(VDPSOH, SGI), FRORXU = "UHG") + # WUXe Sdf
  faceW_ZUaS(aGI, VFDOHV = "IUHH")



1�

� Mixture Distributions

The IDLWKIXO dataset in R contains data on eruptions of Old Faithful ÁGeyser in YellowÅ

stone National ParkÂµ

##   HUXSWLRQV ZDLWLQJ 
## 1     3.600      79 
## 2     1.800      54 
## 3     3.333      74 
## 4     2.283      62 
## 5     4.533      85 
## 6     2.883      55

What is the shape of these distributions¶

head(IDLWKIXO)

IDLWKIXO %>%
  gaWheU(YDULDEOH, YDOXH) %>%
  ggSloW() +
  geom_hiVWogUam(aeV(YDOXH), ELQV = 50) +
  faceW_ZUaS(aYDULDEOH, VFDOHV = "IUHH")



�� � Mivnoke Dilnkiboni`^l

De{^ini`^ �µ� A ka^d`m takiable  il a dilckene mivnoke if nhe dilnkiboni`^ `f  il a
ueighned lom  f`k l`me lejoe^ce `f ka^d`m takiablel  a^d 

 loch nhan µ

F`k  kµtµl°



�µ� Mivnokel tlµÑSoml ��

Evamhle �µ�

�µ� Mivnokel tlµÑSoml

None nhan mivnoke dilnkibonionl ake non nhe lame al nhe dilnkibonion of a lom of kµtµlµ

[ <- VeT(-5, 25, OHQJWK.RXW = 100)

PL[WXUH <- fXncWion([, PHDQV, VG) ^
  # [ LV WKe YecWRU Rf SRLQWV WR eYaOXaWe WKe fXQcWLRQ aW
  # PeaQV LV a YecWRU, Vd LV a VLQgOe QXPbeU
  I <- UeS(0, lengWh([))
  foU(PHDQ in PHDQV) ^ 
    I <- I + dnoUm([, PHDQ, VG)/lengWh(PHDQV) # ZK\ dR I dLYLde?
  `
  I
`

# ORRN aW PL[WXUeV Rf N(PX, 4) fRU dLffeUeQW YaOXeV Rf PX
daWa.fUame([, 
           I1 = mi[WXUe([, c(5, 10, 15), 2), 
           I2 = mi[WXUe([, c(5, 6, 7), 2),
           I3 = mi[WXUe([, c(5, 10, 20), 2),
           I4 = mi[WXUe([, c(1, 10, 20), 2)) %>%
  gaWheU(PL[WXUH, YDOXH, -[) %>%
  ggSloW() +
  geom_line(aeV([, YDOXH)) +
  faceW_ZUaS(.aPL[WXUH, VFDOHV = "IUHHB\")



�� � Mivnoke Dilnkiboni`nl

Evamhle �µ� Len  and ° indehendennµ

 loch nhan µ

Whan ab`on ¶

Q <- 1000
X <- Ubinom(Q, 1, 0.5)

] <- X*UnoUm(Q) + (1 - X)*UnoUm(Q, 4, 1)

ggSloW() +
  geom_hiVWogUam(aeV(]), ELQV = 50)



�µ� Coonn Dana ��

�µ� Models for Coonn Dana ÁrefresherÂ

Recall nhan nhe Poisson  disnribonion is osefol for modeling coonn danaµ

Where  nomber of etenns occoring in a {ved period of nime or spaceµ

When nhe mean  is lou° nhen nhe dana consisns of mosnlw lou taloes Áiµeµ ° encµÂ and
less freqoennlw higher taloesµ

As nhe mean coonn increases° nhe skeuness goes auaw and nhe disnribonion becomes apÅ
provimanelw normalµ

Winh nhe Poisson disnribonion°

Evample �µ�

Evample �µ� The Colorado ditision of Parks and Wildlife has hired woo no analwze nheir
dana on nhe nomber of {sh caoghn in Horsenoonh resetoir bw tisinorsµ Each tisinor uas
asked Å Hou long did woo snaw¶ Å Hou manw {sh did woo canch¶ Å Onher qoesnions¯ Hou
manw people in woor groop° uere children in woor groop° encµ

Some tisiners do non {sh° bon nhere is non dana on if a tisinor {shed or nonµ Some tisinors
uho did {sh did non canch anw {shµ

None° nhis is modi{ed from hnnps¯»»snansµidreµoclaµedo»r»dae»zip»µ

ILVK <- Uead_cVY("KWWSV://VWDWV.LGUH.XFOD.HGX/VWDW/GDWD/ILVK.FVY")



18 4 Mixture Distributions

# ZLWK ]eUReV
ggSloW(ILVK) + geom_hiVWogUam(aeV(FRXQW), ELQZLGWK = 1)

# ZLWKRXW ]eUReV
ILVK %>%
  filWeU(FRXQW > 0) %>%
  ggSloW() + 
  geom_hiVWogUam(aeV(FRXQW), ELQZLGWK = 1)



�µ� Count Data ��

A zeroÅin�ated model assumes that the zero observations have two different origins Ä
structural and sampling zeroesµ

Example �µ�

A zeroÅin�ated model is a mixture model because the distribution is a weighted average of
the sampling model ÁiµeµÑPoissonÂ and a pointÅmass at µ

For °

So that°

To simulate from this distribution°

Q <- 1000
ODPEGD <- 5
SL <- 0.3

X <- Ubinom(Q, 1, SL)
]LS <- X*0 + (1-X)*USoiV(Q, ODPEGD)



20 4 Mixture Distributions

# ]eUR LQfOaWed PRdeO
ggSloW() + geom_hiVWogUam(aeV(]LS), ELQZLGWK = 1)

# PRLVVRQ(5)
ggSloW() + geom_hiVWogUam(aeV(USoiV(Q, ODPEGD)), ELQZLGWK = 1)


