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� Limit Theorems

Motivation

For some new statistics° we may want to derive features of the distribution of the statisticµ

When we canÏt do this analytically° we need to use statistical computing methods to apÅ

proximate themµ

We will return to some basic theory to motivate and evaluate the computational methods

to followµ

�µ� Laws of Large Numbers

Limit theorems describe the behavior of sequences of random variables as the sample size

increases Á Âµ

Often we describe these limits in terms of how close the sequence is to the truthµ

We can evaluate this distance in several waysµ

Some modes of convergence Ä

Laws of large numbers Ä

Mathematical Statistics recap for Computing .

If Xi , . . ., X.
'Idf ft : yvarxi

① what is the distribution of I
-

- I Eti ? Nui, En ) .

② How big does n have to be for I aNormal? 31

HowGse is In to µ ? (how far away
isit ?).

statistic ← true value we are estimating 4.thatstatistic

How do we measure this distance ? ex . II - ml or CI -up maybe ?

In is a randomvaiable
I

e. g .
- almost surely I P(tinyXn = X) -- I ) .
- in probability ( too , thing PCI Hn- X I > E) = o) n gets large .

ns.r.x.sc,⇒⇐, }÷Y
me:: :

(gives us useful approximations) .

- in distribution ( dim

e.gg O

weak LLN : sample mean XT converges in probability to pop, manµ
b- Go

, lying
,

Pfl In -ul se) -- o

strong UN : sample mean In converges a. s . to pop . men n

Pl kin, .tn -

- a) = a
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7µ2 Central Limit Theorem

Theorem 7µ1 ÁCentral Limit Theorem ÁCLTÂÂ Let  be a random sample from a
distribution with mean  and �nite variance ° then the limiting distribution of 

 is µ

Interpretation¯

Note that the CLT doesnÏt require the population distribution to be Normalµ

iid

-

(convergence in distribution) , i.e. In→DX, XvN (µ, E).

The sampling distribution of the sample mean approach e, a normal
distribution

as the sample size increases.

Remedy
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� Estimates and Estimators
Let  be a random sample from a populationµ

Let  be a function of the sampleµ

Statistics estimate parametersµ

Example �µ�

De{nition �µ� An estimator is a rule for calculating an estimate of a given quantityµ
De{nition �µ� An estimate is the result of applying an estimator to observed data samples
in order to estimate a given quantityµ

We need to be careful not to confuse the above ideas¯

We can make any number of estimators to estimate a given quantityµ How do we know the
ÌbestÍ one¶

iid

Then Ta is a "statistic "

and the pdf of Th is called th
' ' sampling distributor of Ta

"

FedsIpu (data)
-

→ characterize
the population .

main Xn is a statistic that would estimate the iain of the pop. rakes.

In sample mean estimates M population mean .

S2 = IT (Xi - In ) ' estimates a pop . variance

S -

- is estimates 6 pop . St. dev.

-

function

an actual number based on data
. observed

A statistic is a point estimator (
if band on actal

"

data

A CI is an interval estimator they are estimates )

- function of r.v. 's → estimator (statistic)

① et
"

?.sc i function of absurd data ( an actual A) → estimate

- fixed but unknown quantity→ parameter.

what are some properties we can use to say an estimator is

" better " then another one ?
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� Evaluating Estimators
There are many ways we can describe how good or bad ÁevaluateÂ an estimator isµ

�µ1 Bias

De�nition �µ1 Let  be a random sample from a population°  a parameter of inÅ
terest° and  an estimatorµ Then the bias of  is de�ned as

De�nition �µ2 An unbiased estimator is de�ned to be an estimator 
where

Example �µ1

Example �µ2

Example �µ�

←
parameter

(fixed baton
known
)

we
want to

estimate .

iid

statistic
← EETCX

, . . .,XuD=S*TCxh→xn)f×
.. . .

n - -Mn) doc
. .. . docu

bias (E.) = O ,
i.e .

ELOI ) -- o

Rayleigh distribution has support co, x) .

if you used Unifco
, , ) as your envelope for Rayleigh dsn,

you histogram of samples msn.t.qapnan.anaggeptrargfnectagb.on.mn
would be biased

( too many small valves,
let X

, >
-
-sXnbea2@sanplefiomEExn3-EftnE.x,] = In sex,

i'd
a population 4 mean advaiaceazo .

= ht . noµ =µ

⇒ bias (In ) = E- In -µ = o ⇒ In is unbiased estimate fo - pop . meanµ .

Compare 2 estimators of O
"

for Ex . 9.2.

Sample variance MLE of variance.

5-- IT Xi - Int E- = 'TE.
,

Cxi - In )
'

can show Es
' = o

' but £2 = ^÷ . s
'

,
so

E G ' = h o
' ⇒ £2 is a biased

estimator.

Note : for large n
,

s
'
x G?



�� � Evaluating Estimators

�µ� Mean Squared Error ÁMSEÂ

De�nition �µ� The mean squared error ÁMSEÂ of an estimator  for parameter  is deÅ
�ned as

Generally° we want estimators with

Sometimes an unbiased estimator  can have a larger variance than a biased estimator 
µ

Example �µ� LetÏs compare two estimators of µ

I can
show

① small bias

} often here is a bias - variance trade -off

② small variance we can 't get both at the same time.

sample variance MLE

C- ( s ') -- o' Eff) = hit 02

but Var
s
'
> Vara !

Can show :

MSE (5) = Eff - a) 2) = ¥64
MSE 62) = Eff d'- s'T) = 217-64

⇒ Ms a- (s2) > MSE Cd4 .

see page 331 of Casella & Berger .



�µ� Snandakd Ekk`k ��

�µ� Snandakd Ekk`k

De{nini`n �µ� The lnandakd ekk`k `f an elniman`k  `f  il de{ned al

We leek elniman`kl uinh lmall µ

Evamhle �µ�

←
standar error

=

st . dev . of sampling distribution

a-

of En
.

see In) --Ein = TE = ÷
.
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�� C`mhaking Elniman`kl
We nwhicallw c`mhake lnanilnical elniman`kl baled `n nhe f`ll`uing balic hk`hekniel¯

�µ 

�µ 

�µ 

�µ 

Consistency : as n 9 x does the estimator converge in probability to parameter it

is estimating ?

Bias : Is the estimator unbiased ? ECE. ) = a ?

¢ Engaging
: En is more efficient than In if bar can) a van con )

.

'
. Compare MSECdn) to Msf CE ) but remember bias Iranian a tradeoff :

MSE ( En ) -- varCdn ) t bias (En )
'
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Example 10µ1 Let us consider the ef�ciency of estimates of the center of a distributionµ A
measure of central tendency estimates the central or typical value for a probability
distributionµ

Mean and median are two measures of central tendencyµ They are both unbiased, which is
more ef�cient¶

VeW.Veed(400)

WimeV <- 10000 # nXmber of Wimes Wo make a sample
n <- 100 # si]e of Whe sample
XnifRUm_UeVXlWV <- daWa.frame(mean = nXmeric(WimeV), median = 
nXmeric(WimeV))

nRUmal_UeVXlWV <- daWa.frame(mean = nXmeric(WimeV), median = 
nXmeric(WimeV))

for(i in 1:WimeV) ^
  [ <- rXnif(n)
  \ <- rnorm(n)
  XnifRUm_UeVXlWV[i, "mean"] <- mean([)
  XnifRUm_UeVXlWV[i, "median"] <- median([)
  nRUmal_UeVXlWV[i, "mean"] <- mean(\)
  nRUmal_UeVXlWV[i, "median"] <- median(\)
`

XnifRUm_UeVXlWV %>%
  gaWher(VWaWiVWic, YalXe, eYer\Whing()) %>%
  ggploW() +
  geom_denViW\(aeV(YalXe, lW\ = VWaWiVWic)) +
  ggWiWle("Unif(0, 1)") +
  Wheme(legend.SRViWiRn = "bRWWRm")

nRUmal_UeVXlWV %>%
  gaWher(VWaWiVWic, YalXe, eYer\Whing()) %>%
  ggploW() +
  geom_denViW\(aeV(YalXe, lW\ = VWaWiVWic)) +
  ggWiWle("NRUmal(0, 1)") +
  Wheme(legend.SRViWiRn = "bRWWRm")

variance

- -

I

↳ which has smaller variance?

→ reproducibility .

{
do it 10, ooo

- times.

* n -- too sized samples Xi , - . ,X, oo

wit - - - e- } glare results .I d.f. w/
pi-
&
f l - 10,000 draws .

' ' times' ' serows
2

columns,
one for

← draw asample from Unit 1917 . each statute
.

← draw a sample from Norm (0,1 ) .
- store mean

- store median .

were
esterifying
for plotting te

sampling distribution

of each statistic

In and median (X,-X. )
for X, , - ., X. n

2 dins



22 10 Comparing Estimators

Next Up In Chµ 5, weÏll look at a method that produces unbiased estimators of ²

Sampling
dsns

A n A
mean [ E.) SILENT

:÷÷i÷÷÷÷÷÷f•
yggg

- O. 0009 0.12

true mean =

true median = true men =

true median
as

.

*
..cat?7.nntien=o

For both Unit (0,1) and Ncql)
,

thotE : this is not the
case for all

- distributions !

Bias : both men and median unbiased when a dsn is heavy tailed,
- median is more efficient than the .

mean
.( robustness) .

Efficiency : mean is more efficient bar (mean (X . . .#s Van (median ( Xi , . .,XnD
.

C- so
j 9

also efficiency ! ¥gfx7fxGddr#
not alwayseasy

to

evaluate analytically .


