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7 Limit Theorems

Motivation

For some new statistics, we may want to derive features of the distribution of the statistic.

When we can’t do this analytically, we need to use statistical computing methods to ap-

proximate them.

We will return to some basic theory to motivate and evaluate the computational methods

to follow.

7.1 Laws of Large Numbers

Limit theorems describe the behavior of sequences of random variables as the sample size

increases ( ).

Often we describe these limits in terms of how close the sequence is to the truth.

We can evaluate this distance in several ways.

Some modes of convergence –

Laws of large numbers –
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7.2 Central Limit Theorem

Theorem 7.1 (Central Limit Theorem (CLT)) Let  be a random sample from a
distribution with mean  and �nite variance , then the limiting distribution of 

 is .

Interpretation:

Note that the CLT doesn’t require the population distribution to be Normal.

iid

-

(convergence in distribution) , i.e. In→DX, XvN (µ, E).

The sampling distribution of the sample mean approach e, a normal
distribution

as the sample size increases.

Remedy
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8 Estimates and Estimators
Let  be a random sample from a population.

Let  be a function of the sample.

Statistics estimate parameters.

Example 8.1

De nition 8.1 An estimator is a rule for calculating an estimate of a given quantity.
De nition 8.2 An estimate is the result of applying an estimator to observed data samples
in order to estimate a given quantity.

We need to be careful not to confuse the above ideas:

We can make any number of estimators to estimate a given quantity. How do we know the
“best” one?

iid

Then Ta is a "statistic "

and the pdf of Th is called th
' ' sampling distributor of Ta

"

FedsIpu (data)
-

→ characterize
the population .

main Xn is a statistic that would estimate the iain of the pop. rakes.

In sample mean estimates M population mean .

S2 = IT (Xi - In ) ' estimates a pop . variance

S -

- is estimates 6 pop . St. dev.

-

function

an actual number based on data
. observed

A statistic is a point estimator (
if band on actal

"

data

A CI is an interval estimator they are estimates )

- function of r.v. 's → estimator (statistic)

① et
"

?.sc i function of absurd data ( an actual A) → estimate

- fixed but unknown quantity→ parameter.

what are some properties we can use to say an estimator is

" better " then another one ?
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9 Evaluating Estimators
There are many ways we can describe how good or bad (evaluate) an estimator is.

9.1 Bias

De�nition 9.1 Let  be a random sample from a population,  a parameter of in-
terest, and  an estimator. Then the bias of  is de�ned as

De�nition 9.2 An unbiased estimator is de�ned to be an estimator 
where

Example 9.1

Example 9.2

Example 9.3

←
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known
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we
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9.2 Mean Squared Error (MSE)

De�nition 9.3 The mean squared error (MSE) of an estimator  for parameter  is de-
�ned as

Generally, we want estimators with

Sometimes an unbiased estimator  can have a larger variance than a biased estimator 
.

Example 9.4 Let’s compare two estimators of .

I can
show

① small bias

} often here is a bias - variance trade -off

② small variance we can 't get both at the same time.

sample variance MLE

C- ( s ') -- o' Eff) = hit 02

but Var
s
'
> Vara !

Can show :

MSE (5) = Eff - a) 2) = ¥64
MSE 62) = Eff d'- s'T) = 217-64

⇒ Ms a- (s2) > MSE Cd4 .

see page 331 of Casella & Berger .
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9.3 Standard Error

De nition 9.4 The standard error of an estimator  of  is de ned as

We seek estimators with small .

Example 9.5

←
standar error

=

st . dev . of sampling distribution

a-

of En
.

see In) --Ein = TE = ÷
.
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10 Comparing Estimators
We typically compare statistical estimators based on the following basic properties:

1. 

2. 

3. 

4. 

Consistency : as n 9 x does the estimator converge in probability to parameter it

is estimating ?

Bias : Is the estimator unbiased ? ECE. ) = a ?
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'
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Example 10.1 Let us consider the ef�ciency of estimates of the center of a distribution. A
measure of central tendency estimates the central or typical value for a probability
distribution.

Mean and median are two measures of central tendency. They are both unbiased, which is
more ef�cient?

set.seed(400)

times <- 10000 # number of times to make a sample
n <- 100 # size of the sample
uniform_results <- data.frame(mean = numeric(times), median = 
numeric(times))

normal_results <- data.frame(mean = numeric(times), median = 
numeric(times))

for(i in 1:times) {
  x <- runif(n)
  y <- rnorm(n)
  uniform_results[i, "mean"] <- mean(x)
  uniform_results[i, "median"] <- median(x)
  normal_results[i, "mean"] <- mean(y)
  normal_results[i, "median"] <- median(y)
}

uniform_results %>%
  gather(statistic, value, everything()) %>%
  ggplot() +
  geom_density(aes(value, lty = statistic)) +
  ggtitle("Unif(0, 1)") +
  theme(legend.position = "bottom")

normal_results %>%
  gather(statistic, value, everything()) %>%
  ggplot() +
  geom_density(aes(value, lty = statistic)) +
  ggtitle("Normal(0, 1)") +
  theme(legend.position = "bottom")

variance

- -

I

↳ which has smaller variance?

→ reproducibility .

{
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.
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for plotting te

sampling distribution
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Next Up In Ch. 5, we’ll look at a method that produces unbiased estimators of !

Sampling
dsns

A n A
mean [ E.) SILENT

:÷÷i÷÷÷÷÷÷f•
yggg

- O. 0009 0.12

true mean =
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true median
as

.

*
..cat?7.nntien=o

For both Unit (0,1) and Ncql)
,

thotE : this is not the
case for all

- distributions !

Bias : both men and median unbiased when a dsn is heavy tailed,
- median is more efficient than the .

mean
.( robustness) .

Efficiency : mean is more efficient bar (mean (X . . .#s Van (median ( Xi , . .,XnD
.

C- so
j 9

also efficiency ! ¥gfx7fxGddr#
not alwayseasy

to

evaluate analytically .


