
72

5 Git and GitHub

https://xkcd.com/1597/

Note: Thanks to http://happygitwithr.com for inspiration and material.

5.1 De�nition/background

Git is a version control system that was created to help developers manage collaborative
software projects. Git tracks the evolution of a set of �les, called a repository or repo.

https://xkcd.com/1597/
http://happygitwithr.com/


5.1 De�nition/background 73

This helps us

merge con�icts that arrise from collaboration
rollback to previous versions of �les as necessary
store master versions of �les, no more
paper_final_final_I_really_mean_it.docx

(http://phdcomics.com/comics/archive.php?comicid=1531)

http://phdcomics.com/comics/archive.php?comicid=1531


74 5 Git and GitHub

5.2 Terminology

Repository: The most basic element of git, imagine as a project’s folder. A reposito-
ry contains all of the project �les, and stores each �le’s revision history. Can be ei-
ther public or private.
Clone: A copy of a repository that lives on your computer instead of on a website’s
server somewhere, or the act of making that copy.
Pull: When you are fetching in changes and merging them.
Commit: An individual change to a �le (or set of �les). Every time you save it creates
a unique ID that allows you to keep record of what changes were made when and by
who.
Push: Sending your committed changes to a remote repository such as GitHub.com.
Fork: A fork is a personal copy of another user’s repository that lives on your ac-
count. Forks allow you to freely make changes to a project without affecting the
original.
Pull Request: Proposed changes to a repository submitted by a user and accepted or
rejected by a repository’s collaborators.
Issue: Issues are suggested improvements, tasks or questions related to the
repository.
Remote: This is the version of something that is hosted on a server, most likely Git-
Hub.com. It can be connected to local clones so that changes can be synced.

From https://help.github.com/articles/github-glossary/.

5.3 GitHub

There are many hosting services for remote repositories (GitHub, Bitbucket, GitLab, etc.).
We will use GitHub in this class, but the ideas carry over to the other services.

By default, all materials on GitHub are public. This is good because you are getting your
work out there and contributing to the open source community!

If you need private repos, checkout GitHub for Education (https://education.github.com/) -
free private repos for students/postdocs/professors.

https://help.github.com/articles/github-glossary/
file:///Users/andeek/Documents/teaching/stat400/notes/0_tools/github.com
file:///Users/andeek/Documents/teaching/stat400/notes/0_tools/bitbucket.org
file:///Users/andeek/Documents/teaching/stat400/notes/0_tools/about.gitlab.com
https://education.github.com/


5.4 Creating Repos 75

5.4 Creating Repos

1. 

2. 

Initialize readme (yes), .gitignore (R usually), license (e.g. GPL 3)



76 5 Git and GitHub

Your Turn
1. Create a GitHub account

github.com (http://github.com)

Consider your username, want to be identi�able, professional and probably in-
clude your actual name. Do you have other handles? Twitter?

Don’t worry about paying for a plan now, stick with the free one.

2. Create a hello-world repo

3. E-mail me your GitHub username so that I can add you to our class organization

http://github.com/


5.4 Creating Repos 77

Cloning a repo –

From scratch:

1. Create the repo on the GitHub website

2. Clone the repo

3. Start working

4. Add �les, commit, push, etc.

From existing folder:

1. Create the repo on the GitHub website

2. Clone the repo

3. Copy existing work into local folder

4. Add �les, commit, push, etc.



78 5 Git and GitHub

5.5 Pushing and pulling, a tug of war

Important: remember to pull before you start working to get the most up to date changes
from your collaborators (or your past self) before making local changes!

5.6 When should I commit?

Think of commits as a checkpoint in a video game. This is a point in time when you want
to save your status so that you can come back to it later if need be.

Commits are like voting. I like to do it early and often.

- Me, right now

5.7 Blow it up

Sometimes your local repo gets borked. That’s OK. There are ways that we can work real-
ly hard and �x them, but sometimes you just want to stash your �les somewhere and re-
clone from your centralized repository.

5.8 Git with RStudio

Rstudio.cloud allows you to make projects based on GitHub repos.



5.5 Pushing and pulling, a tug o… 79

Local RStudio works much the same way, with the ability to push/pull from a local project
to a GitHub repo.



80 5 Git and GitHub

By letting us

1. Select �les to commit.
2. Commit
3. Push/Pull



5.9 Collaboration 81

5.9 Collaboration

In this class, we will have a collaborative project. It will be hosted on GitHub and part of
your grade will be how well you collaborate through the use of GitHub. For this, we will
need to have project repos that everyone can push to!

GitHub Repo site (https://github.com/username/reponame) > Settings > Collaborators
& Teams > Collaborators > Add collaborator

Your collaborators will have a lot of power in your repo, so choose wisely! They can
change anything in the repo and add their own �les. They can also delete your �les! The
only thing they can’t do is delete the repo, add collaborators, or change other settings for
the repo.

5.10 Installation help

We are not covering installation on your personal computers for this class. If you would
like to work through it on your own, here is an excellent guide:
http://happygitwithr.com/installation-pain.html

Feel free to come to of�ce hours or setup individual time with us if you need help.

https://github.com/username/reponame
http://happygitwithr.com/installation-pain.html


82 5 Git and GitHub

Your Turn
1. Edit the README �le in your hello-world repo

2. Commit and push changes

3. Check out your commit history!

4. Add me (andeek) as a collaborator to your hello-world repo


