3 Bootstrapping Dependent Data

Suppose we have dependent data $\boldsymbol{y} = (y_1, \ldots, y_n)$ generated from some unknown distribu-

tion $F = F_Y = F_{(Y_1, \dots, Y_n)}$. $Y_{(1)} = Y_n$ ab longer assuming independence, could be time series for example (or spatial etc.)

Goal:

To approximate the day of a statistic
$$\theta = T(Y)$$

Challenge:

If we used find boot strap for dependent data then $Var(\theta)$ based in bootshop, would be wrong (too small), and any internal we make using this pocedure We will consider 2 approaches would be invalid.

3.1 Model-based approach

Example 3.1 Suppose we observe a time series $Y = (Y_1, \ldots, Y_n)$ which we assume is generated by an AR(1) process, i.e., "auto regressive" \rightarrow "regressed on itself"

$$y_{t} = \alpha y_{t-1} + \varepsilon_{t}$$
 $t=1,...,n$
 $|\alpha| < 1$ and $\varepsilon_{t} \sim (0; 6^{2})$
"innovations" there or problem into iid bootstrap.

If we assume an AR(1) model for the data, we can consider a method similar to bootstrapping residuals for linear regression.

This may not always be a good assumption.

3.2 Nonparametric approach

To deal with dependence in the data, we will employ a nonparametric <u>block</u> bootstrap. Idea:

resample data in blocks to preserve the dependence structure within the blocks.

3.2.1 Nonoverlapping Blocks (NBB)

Consider splitting $\boldsymbol{Y} = (Y_1, \ldots, Y_n)$ in *b* consecutive blocks of length ℓ .

Y,	Y ₂	Yg-1 Ye	Y+I	1/2 e	Yn-eti	Yn •
\vdash				-1		1
	Β,		B_2		B _b	

We can then rewrite the data as $Y = (B_1, \ldots, B_b)$ with $B_k = (Y_{(k-1)\ell+1}, \ldots, Y_{k\ell})$, $k = 1, \ldots, b$. $b = \lfloor \frac{n}{\ell} \rfloor$ "floor function" = round down.

Note, the order of data within the blocks must be maintained, but the order of the blocks that are resampled does not matter.

3.2.2 Moving Blocks (MBB)

Now consider splitting $\mathbf{Y} = (Y_1, \ldots, Y_n)$ into overlapping blocks of adjacent data points of length ℓ .

3.2.3 Choosing Block Size

If the block length is too short,

If the block length is too long,

not many blocks to somple (docs not resemble data generation)

There are practical methods for choosing le (Lahiri, 2003)

Your Turn

We will look at the annual numbers of lynx trappings for 1821–1934 in Canada. Taken from Brockwell & Davis (1991).

data(lynx)
plot(lynx)

Goal: Estimate the sample distribution of the mean

$$\Theta = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

theta_hat <- mean(lynx)
theta_hat</pre>

[1] 1538.018

3.2.4 Independent Bootstrap

```
library(simpleboot)
B <- 10000
### Your turn: perform the independent bootstap
## what is the bootstrap estimate se?</pre>
```

We must account for the dependence to obtain a correct estimate of the variance!

The acf (autocorrelation) in the dominant terms is positive, so we are *underestimating* the standard error.

3.2.5 Non-overlapping Block Bootstrap

```
# function to create non-overlapping blocks
nb <- function(x, b) {</pre>
  n <- length(x)
  1 <- n %/% b
  blocks <- matrix(NA, nrow = b, ncol = 1)</pre>
  for(i in 1:b) {
    blocks[i, ] <- x[((i - 1)*l + 1):(i*l)]
  }
  blocks
}
# Your turn: perform the NBB with b = 10 and l = 11
theta_hat_star_nbb <- rep(NA, B)</pre>
nb blocks <- nb(lynx, 10)</pre>
for(i in 1:B) {
  # sample blocks
  # get theta hat^*
}
# Plot your results to inspect the distribution
# What is the estimated standard error of theta hat? The Bias?
```

3.2.6 Moving Block Bootstrap

```
# function to create overlapping blocks
mb <- function(x, l) {
    n <- length(x)
    blocks <- matrix(NA, nrow = n - l + 1, ncol = l)
    for(i in 1:(n - l + 1)) {
        blocks[i, ] <- x[i:(i + l - 1)]
    }
    blocks
}
# Your turn: perform the MBB with l = 11
mb_blocks <- mb(lynx, 11)
theta_hat_star_mbb <- rep(NA, B)
for(i in 1:B) {
        # sample blocks
        # get theta_hat^*</pre>
```

}
Plot your results to inspect the distribution
What is the estimated standard error of theta hat? The Bias?

3.2.7 Choosing the Block size

Your turn: Perform the mbb for multiple block sizes l = 1:12
Create a plot of the se vs the block size. What do you notice?

4 Summary

Bootstrap methods are simulation methods for frequentist inference.

Bootstrap methods are useful for

especially when added assumptions are invalid.

Bootstrap methods can fail when