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3 Bootstrapping Dependent Data
Suppose we have dependent data  generated from some unknown distribuÅ
tion .

Goal:

Challenge:

We will consider 2 approaches

✓joint distribution
Yi - - i Yn no longer assuming independence , could be time

series for example (or spatial,
f-

etc
. )

To approximate te dsn of a statistic 0 = TCY)
.

since Yi 's dependent, it is inappropriate to use the bootstrap
for iid data ! Bootstrapped samples would no longer reproduce
the data generating process !

If we used Iid bootstrap for dependent data
,

then Voir CE) based
on

bootstrap ,

would be wrong ( too small ) . and any inference we make using this procedure
would be invalid

.

① model - based (parametric bootstrap)

② black bootstrap ( 2 types) (nonparametric bootstrap ) .
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3µ1 ModelÅbased approach

Example 3µ1 Suppose we observe a time series  which we assume is genÅ
erated by an ARÁ1Â process, iµeµ,

If we assume an ARÁ1Â model for the data, we can consider a method similar to bootstrapÅ
ping residuals for linear regressionµ

ModelÅbased Ä the performance of this approach depends on the model being appropriate
for the dataµ

" auto regressive " →
" regressed on itself "

Yz = a Yt-i t Et t -- I , - -, n

lat e l and q

our problem into iid bootstrap.

" innovations" Tucano ← variance

① Estimate I from data (fit the model ) ,
a →

observed data

② Define estimated innovations I = Yt - Itt
,
,

t--2, - → n

h n

T
from ①

and I = IT Eet their sample mean
t E-2

③ Define the residuals of the model as centered innovations

^ -

- n n

E -

et
-

et

⑨ For b -- I
, . .,
B

we replacenet.

a) Create the bootstrap sample If , . . . In" by independently sampling
"
htt

values from the n- l valves It , 7=2, → h
.

b) construct pseudo - data Y " = Cy?
, . ,
y; ) as .

YI = IF
,

7¥ = 27¥, t EE
,
t -- lo . -in .

4 define IT as the estimate of 2 from YT , - > YI .

⑤ the dsn of IT, . . . , FF is used to estimate tesanphgdsn of 2 .

-

-

This may not always be a good assumption .
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�µ2 Nonparametric approach

To deal with dependence in the data° we will employ a nonparametric block bootstrapµ

Idea¯

�µ2µ1 Nonoverlapping Blocks ÁNBBÂ

Consider splitting  in  consecutive blocks of length µ

We can then rewrite the data as  with ° 
µ

Note° the order of data within the blocks must be maintained° but the order of the blocks
that are resampled does not matterµ

-

resample data in blocks to preserve the dependence

structure within the blocks .

% ah
. . .

aye-t.eu?eH . . .
cake . . .

ooh - ett
. . .

"

µ__p key pep

B
,

Bz Bb

b. = Lte) "floor function " = round down .

① Sample hen -overlapping blocks BF
, - → BE independently from

B. , - , Bb ( with replacement) to form pseudo data E- (BY , . ., Bj) .

② statistic of interest 0 is estimated from Y" to create £?

③ Repeat l - 2 B tires to obtain £7
. .
-

, Ej with which to
estimate the dsn of E .
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3.2.2 Moving Blocks (MBBÂ

Now consider splitting  into overlapping blocks of adjacent data points of
length .

We can then write the blocks as , .

Yea' ok 13
.
.
- Pe-I ate Yeti

. . .

In

B , i-d
p-

Ba a-
now

we
have

133 .

. more blocks
to

i.

Bn -et,
t
I choose from

?

independently w/ replacement.
b--Lte)

① Create pseudo data by resanpliny he blocks BY, - .,B*⑤d
from B

, , . . ,
Bret , and form pseudo data 9¥ (BY, . ., Bj) .

② Calculate EX fwm y 't

③ Repeat I -2 B this to get £7
,
- .

, B
.
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�µ�µ� Ch``li^g B[`ck Size

If nhe b[`ck [e^gnh il n`` lh`kn°

If nhe b[`ck [e^gnh il n`` [`^g°

The resampling cannot capture the dependence ( l
-

- I is the iid

bootstrap)

not many
blocks to sample ( does not resemble data generation )

Asymptotically : block length should increase w/ length
of the time series . If so

,
MBB and NBB produce

consistent estimators of moments , correct coverage probabilities
for CIS and correct error rates for tests .

There are practical methods for choosing l

( Lahiri
,

20037
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Your Turn
We will look at the annual numbers of lwnx trappings for ����Ä���� in Canadaµ Taken
from Brockwell ê Davis Á����Âµ

Goal¯ Estimate the sample distribution of the mean

## [1] 1538.018

data(O\Q[)
plot(O\Q[)

WheWa_haW <- mean(O\Q[)
WheWa_haW

E -- I Iii
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3µ2µ4 Independent Bootstrap

We must account for the dependence to obtain a correct estimate of the variance!

The acf ÁautocorrelationÂ in the dominant terms is positive, so we are underestimating the
standard errorµ

librar\(ViPSOebRRW)
B <- 10000

## YRXU WXUQ: SeUfRUP Whe iQdeSeQdeQW bRRWVWaS
## ZhaW iV Whe bRRWVWUaS eVWiPaWe Ve?

acf(O\Q[) lag

Auto correlation function 8 ( ht -- Corr ( Ye
, 4th )
← lagged observations

0 always = I

-

-
- h



�µ� Nonpakamenkic appkoach ��

�µ�µ� NonÅoteklapping Block Boonlnkap

�µ�µ� Moting Block Boonlnkap

# fXQcWiRQ WR cUeaWe QRQ-RYeUlaSSiQg blRckV
Qb <- fXnction([, b) ^
  Q <- length([)
  O <- Q %/% b
  
  bORckV <- matri[(NA, QURZ = b, QcRO = O)
  for(i in 1:b) ^
    bORckV[i, ] <- [[((i - 1)*O + 1):(i*O)]
  `
  bORckV
`

# YRXU WXUQ: SeUfRUP Whe NBB ZiWh b = 10 aQd l = 11
WheWa_haW_VWaU_Qbb <- rep(NA, B)
Qb_bORckV <- nb(O\Q[, 10)
for(i in 1:B) ^
  # VaPSle blRckV
  # geW WheWa_haW^*
`

# PlRW \RXU UeVXlWV WR iQVSecW Whe diVWUibXWiRQ
# WhaW iV Whe eVWiPaWed VWaQdaUd eUURU Rf WheWa haW? The BiaV?

# fXQcWiRQ WR cUeaWe RYeUlaSSiQg blRckV
Pb <- fXnction([, O) ^
  Q <- length([)
  bORckV <- matri[(NA, QURZ = Q - O + 1, QcRO = O)
  for(i in 1:(Q - O + 1)) ^
    bORckV[i, ] <- [[i:(i + O - 1)]
  `
  bORckV
`

# YRXU WXUQ: SeUfRUP Whe MBB ZiWh l = 11
Pb_bORckV <- mb(O\Q[, 11)
WheWa_haW_VWaU_Pbb <- rep(NA, B)
for(i in 1:B) ^
  # VaPSle blRckV
  # geW WheWa_haW^*
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�µ�µ� Chooling nhe Block lize

`

# PlRW \RXU UeVXlWV WR iQVSecW Whe diVWUibXWiRQ
# WhaW iV Whe eVWiPaWed VWaQdaUd eUURU Rf WheWa haW? The BiaV?

# YRXU WXUQ: PeUfRUP Whe Pbb fRU PXlWiSle blRck Vi]eV l = 1:12
# CUeaWe a SlRW Rf Whe Ve YV Whe blRck Vi]e. WhaW dR \RX QRWice?



��

� Sommakw
Boonlnkap menhodl ake limolanion menhodl fok fkeqoenniln infekenceµ

Boonlnkap menhodl ake olefol fok

Boonlnkap menhodl can fail uhen

e :
Yesion
inference

especially when aredel assumption, are invalid .

We have extremes or heavy tailed dsns
.

can be be computationally intensive (slow) .

need to be careful dependence .


