

We let $\beta = P(\text{fail to reject } H_0 | H_0 \text{ is false}) = P(\text{Type II error})$, then Power = $P(\text{reject } H_0|H_0 \text{ is false}) = 1 - \beta.$

Power depends on the distance between the hypothesized value of the parameter θ_0 and the actual value θ_1 , so we can write $1 - \beta(\theta_1)$.

 $H_a: \theta > \theta_0$

> effect size.

Why is power important?

- 1. It you have multiplé statistical testing method for the same hypothesis, choose he test that is most poverful.
- 2. If you're going to spend time/money to do an experiment, heed to check beforehand that your Stidy will be poverfil erough to detect an effect.

2.3 Power 13

For a few simple cases, you can derive a closed form expression of power.

All others: Use Monte Calo nethods to estimate pover.

Example 2.4 Consider a one-sample z-test. Sample $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$.

Ho: $M = M_0$ vs. $H_a : \mu > M_0$ unbount

Using statistic $Z^{\pm} = \frac{\pi}{6/5n}$, we reject H_0 if $Z^{\pm} > Z_{1-\alpha}$ If $\mu_0 = 5$ (hypothesized valve) but the true mean is $\mu_1 = 6$.

What is the prob. of correctly rejecting $H_0 : \mu = 5$? This is power.

Effect size: $\mu_1 - M_0 = 6 - 5 = 1$. If the effect size was 10, our test would have more power (casier to Johnston to truth).

For the z-test, m can derive power (chihora is Hegherberg ρ . 229-230). $1 - \beta = \rho \left(\text{reject } H_0 \right)$ the is talse) $= \rho \left(Z^{\pm} > Z_{1-\alpha} - \frac{(M_1 - M_0)}{6/5n} \right)$ Smallet Z where you can reject H_0 .

So power is a function of

- 1. Significance level: as of, power 1 [trade off btw type I and type II error]
- 2. Effect size: M.-Mo as effect size 1, pour 1
- 3. Sample size: as at, pover 1
- 4. Variance: as variance I, parer 1 (no control over this in practice).

 Notes: (1) as pener = 1-p 9, P(type I error) = x 1, For fixed

 N, o, \(\frac{3}{4} \mu_1 \mu_0 \), the only way to increase power, is to Tx.
 - 2) The only way to simultaneously 1 porer & da, must 1n.

2.4 MC Estimator of $1 - \beta$

Assume $X_1, \ldots, X_n \sim F(\theta_0)$ (i.e., assume H_0 is true).

Then, we have the following hypothesis test –

$$H_0: heta = heta_0 \ H_a: heta > heta_0$$

and the statistics T^* , which is a test statistic computed from data. Then we reject H_0 if T^* > the critical value from the distribution of the test statistic.

This leads to the following algorithm to estimate the power of the test $(1 - \beta)$

3) Set n, other parameter velves (e.g. 6), and
$$\propto$$

Then for each
$$\hat{j} = 1, ..., m$$

a) Sample $X_1^{(j)}, ..., X_n^{(j)}$ from the model under the alternative hypothesis $\theta = \theta_1$

b) compute
$$T^{*(j)}$$
 based on data from a), $\frac{e.g.}{2}\{T^{*(j)}\}$ scrit. $\frac{1}{2}\{T^{*(j)}\}$ conpute f = 1 { reject H, band f = 1 } based on

(5) comprte 1-3= tm = 7; · Ci.e. count of correct answers),

Your Turn

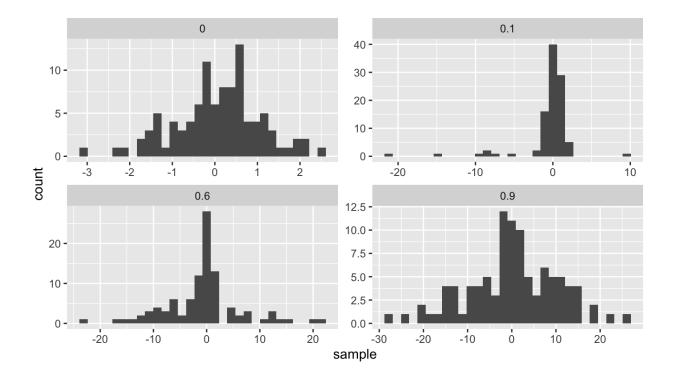
Consider data generated from the following mixture distribution:

$$f(x) = (1 - \epsilon)f_1(x) + \epsilon f_2(x), \quad x \in \mathbb{R}$$

where f_1 is the pdf of a N(0,1) distribution, f_2 is the pdf of a N(0,100) distribution, and $\epsilon \in [0,1]$.

```
r_noisy_normal <- function(n, epsilon) {
  z <- rbinom(n, 1, 1 - epsilon)
  z*rnorm(n, 0, 1) + (1 - z)*rnorm(n, 0, 10)
}

n <- 100
data.frame(e = 0, sample = r_noisy_normal(n, 0)) %>%
  rbind(data.frame(e = 0.1, sample = r_noisy_normal(n, 0.1))) %>%
  rbind(data.frame(e = 0.6, sample = r_noisy_normal(n, 0.6))) %>%
  rbind(data.frame(e = 0.9, sample = r_noisy_normal(n, 0.9))) %>%
  rbind(data.frame(e = 0.9, sample = r_noisy_normal(n, 0.9))) %>%
  ggplot() +
  geom_histogram(aes(sample)) +
  facet wrap(.~e, scales = "free")
```



We will compare the power of various tests of normality. Let F_X be the distribution of a random variable X. We will consider the following hypothesis test,

$$H_0: F_x \in N$$
 vs. $H_a: F_x \notin N$,

where N denotes the family of univariate Normal distributions.

Recall Pearson's moment coefficient of skewness (See Example 2.2).

We will compare Monte Carlo estimates of power for different levels of contamination ($0 \le \epsilon \le 1$). We will use $\alpha = 0.1$, n = 100, and m = 100.

```
# skewness statistic function
skew <- function(x) {</pre>
  xbar <- mean(x)
  num \leftarrow mean((x - xbar)^3)
  denom \leftarrow mean((x - xbar)^2)
  num/denom<sup>1.5</sup>
}
# setup for MC
alpha <- .1
n < -100
m < -100
epsilon \leftarrow seq(0, 1, length.out = 200)
var sqrt b1 \leftarrow 6*(n - 2)/((n + 1)*(n + 3)) # adjusted variance for
 skewness test
crit val <- qnorm(1 - alpha/2, 0, sqrt(var sqrt b1)) #crit value for</pre>
  the test
empirical pwr <- rep(NA, length(epsilon)) #storage</pre>
# estimate power for each value of epsilon
for(j in 1:length(epsilon)) {
  # perform MC to estimate empirical power
  ## Your turn
}
## store empirical se
empirical_se <- "Your Turn: fill this in"</pre>
## plot results --
## x axis = epsilon values
## y axis = empirical power
## use lines + add band of estimate +/- se
```

We can detect contamination levels between . 015 ad . 15 power z 0.8 when n=100 -> & is like effect size (distance from 0) Compare the power with n=100 to the power with n=10. Make a plot to compare the two for many values of ϵ .

heall power depards on 3 things:

- (1) level of he firt of
- 3 sample size n
- 3) effect size

When n=10, power < 0.8 for all bends of E