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2 Monte Carlo Methods for Hypothesis Tests

There are two aspects of hypothesis tests that we will investigate through the use of

Monte Carlo methods: Type I error and Power.

Example 2.1 Assume we want to test the following hypotheses

with the test statistic

This leads to the following decision rule:

What are we assuming about ?

2.1 Types of Errors

Type I error:

Type II error:
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Usually we set  or , and choose a sample size such that power = 

.

For simple cases, we can nd formulas for  and .

2.2 MC Estimator of 

Assume  (i.e., assume  is true).

Then, we have the following hypothesis test –

and the statistics , which is a test statistic computed from data. Then we reject  if 

 the critical value from the distribution of the test statistic.

This leads to the following algorithm to estimate the Type I error of the test ( )
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.
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Your Turn
Example 2.2 (Pearson’s moment coef cient of skewness) Let  where  and

. Let

Then for a

symmetric distribution, ,
positively skewed distribution, , and
negatively skewed distribution, .

The following is an estimator for skewness

It can be shown by Statistical theory that if , then as ,

Thus we can test the following hypothesis

by comparing  to a critical value from a  distribution.

In practice, convergence of  to a  is slow.

We want to assess  for  for .
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library(tidyverse)

# compare a symmetric and skewed distribution
data.frame(x = seq(0, 1, length.out = 1000)) %>%
  mutate(skewed = dbeta(x, 6, 2),
         symmetric = dbeta(x, 5, 5)) %>%
  gather(type, dsn, -x) %>%
  ggplot() +
  geom_line(aes(x, dsn, colour = type, lty = type))

## write a skewness function based on a sample x
skew <- function(x) {
  
}

## check skewness of some samples
n <- 100
a1 <- rbeta(n, 6, 2)
a2 <- rbeta(n, 2, 6)

## two symmetric samples
b1 <- rnorm(100)
b2 <- rnorm(100)

## fill in the skewness values
ggplot() + geom_histogram(aes(a1)) + xlab("Beta(6, 2)") + 
ggtitle(paste("Skewness = "))
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Example 2.3 (Pearson’s moment coef cient of skewness with variance correction) One

way to improve performance of this statistic is to adjust the variance for small samples. It

can be shown that

Assess the Type I error rate of a skewness test using the nite sample correction variance.

ggplot() + geom_histogram(aes(a2)) + xlab("Beta(2, 6)") + 
ggtitle(paste("Skewness = "))

ggplot() + geom_histogram(aes(b1)) + xlab("N(0, 1)") + 
ggtitle(paste("Skewness = "))

ggplot() + geom_histogram(aes(b2)) + xlab("N(0, 1)") + 
ggtitle(paste("Skewness = "))

## Assess the P(Type I Error) for alpha = .05, n = 10, 20, 30, 50, 
100, 500


