2 Monte Carlo Methods for Hypothesis Tests

There are two aspects of hypothesis tests that we will investigate through the use of Monte Carlo methods: Type I error and Power.

Example 2.1 Assume we want to test the following hypotheses

$$egin{array}{l} H_0:\mu=5\ H_a:\mu>5 \end{array}$$

with the test statistic

$$T^* = rac{\overline{x}-5}{s/\sqrt{n}}.$$

This leads to the following decision rule: Reject H₀ \tilde{F} $T^* > t_{(1-\alpha/2), n-1} = qt (1-\alpha/2, n-1)$ equivalent to: Reject to if p-value < a.

What are we assuming about X?

$$X_{1}, \dots, X_{n} \stackrel{iid}{\sim} N(M, 6^{2})$$

2.1 Types of Errors

Decision

Type I error: Reject Ho when Ho true

Type II e	rror: Fail	to reject Ho	when Ho false.
	Ho true	Ho False	a = P(reject Hol Ho true)
Reject Ho	Type I error	correct devision	= P(Type I error)
	9	Power = 1-B	$\beta = P(Fail to reject Hol Ho Fabe)$ = $P(Type II error).$
Fail to reject H	decision	B	

7

â

Usually we set $\alpha = 0.05$ or 0.10, and choose a sample size such that power =

For simple cases, we can find formulas for α and β . For all others, we can use monte carlo integration to estimate α and $1-\beta$

2.2 MC Estimator of α

Assume $X_1, \ldots, X_n \sim F(\theta_0)$ (i.e., assume H_0 is true).

Then, we have the following hypothesis test –

$$egin{aligned} H_0: heta &= heta_0 \ H_a: heta &> heta_0 \end{aligned}$$

and the statistics T^* , which is a test statistic computed from data. Then we reject H_0 if $T^* >$ the critical value from the distribution of the test statistic.

This leads to the following algorithm to estimate the Type I error of the test $(\alpha) \leftarrow g \circ f$

For replicate
$$j=1,...,m$$
 [mill distribution.
1. Generate $\chi_{1}^{(j)},...,\chi_{n}^{(j)} \sim F(\theta_{0})$
2. Compute $T^{*(j)} = \gamma(\chi_{1}^{(j)},...,\chi_{n}^{(j)})$ where Υ is a function of decta.
3. Let $\Gamma_{j} = \begin{cases} 1 & \text{if } reject H_{0} \text{ based on } T^{*(j)} \\ 0 & \text{o.v.} \end{cases}$
Then $\hat{\alpha} = \frac{1}{m} \sum_{i=1}^{m} \Gamma_{j} = \text{estimate type I error rate } \left(\hat{P}(reject H_{0}| H_{0}| tho true)\right)$
and $\hat{Se}(\hat{\alpha}) = \int_{m-2}^{\hat{\alpha}(1-\hat{\alpha})} = \text{estimate of } \sqrt{Var(\hat{\alpha})} = \frac{estimated uncertainty}{about estator of $\alpha}$.
Why? $Var(\hat{\alpha}) = \frac{1}{m^{2}} \sum_{i=1}^{n} Var \Gamma_{j}$, and $\Gamma_{j} \stackrel{\text{ind}}{\sim} \text{Bern oulli'}(\rho)$, where
 $\Rightarrow Var \Gamma_{j} = \alpha(1-\alpha)$ $\rho = P(reject H_{0} | X_{1j-j}, X_{n} \sim F(\theta_{0})) = \alpha$
 $\Rightarrow Var(\hat{\alpha}) = \frac{1}{m} \hat{\alpha}(1-\hat{\alpha})$.$

Your Turn

Example 2.2 (Pearson's moment coefficient of skewness) Let $X \sim F$ where $E(X) = \mu$ and $Var(X) = \sigma^2$. Let

$$\sqrt{eta_1} = E\left[\left(rac{X-\mu}{\sigma}
ight)^3
ight].$$

Then for a

- symmetric distribution, $\sqrt{\beta_1} = 0$,
- positively skewed distribution, $\sqrt{\beta_1} > 0$, and
- negatively skewed distribution, $\sqrt{\beta_1} < 0$.

The following is an estimator for skewness

$$\sqrt{b_1} = rac{\displaystyle rac{1}{n}\sum\limits_{i=1}^n (X_i - \overline{X})^3}{\displaystyle \left[\displaystyle rac{1}{n}\sum\limits_{i=1}^n (X_i - \overline{X})^2
ight]^{3/2}}$$

It can be shown by Statistical theory that if $X_1,\ldots,X_n\sim N(\mu,\sigma^2),$ then as $n
ightarrow\infty,$

$$\sqrt{b_1} \stackrel{.}{\sim} N\left(0,rac{6}{n}
ight).$$

Thus we can test the following hypothesis

nesis

$$H_0: \sqrt{\beta_1} = 0$$
 $H_o: Symmetric dsn$
 $H_a: \sqrt{\beta_1} \neq 0$ $H_o: do not.$

by comparing $\frac{\sqrt{b_1}}{\sqrt{\frac{6}{n}}}$ to a critical value from a N(0,1) distribution. or we could compare $\int_{b_1}^{b_1} + 0$ a critical value from $N(0, \frac{6}{n})$. In practice, convergence of $\sqrt{b_1}$ to a $N\left(0, \frac{6}{n}\right)$ is slow.

 H_0

We want to assess P(Type I error) for $\alpha = 0.05$ for n = 10, 20, 30, 50, 100, 500.

skew left.

```
library(tidyverse)
# compare a symmetric and skewed distribution
data.frame(x = seq(0, 1, length.out = 1000)) %>%
  mutate(skewed = dbeta(x, 6, 2))
          symmetric = dbeta(x, 5, 5)) %>%
   gather(type, dsn, -x) %>%
                                                        , Beta (6,2)
  ggplot() +
   geom_line(aes(x, dsn, colour = type, lty = type))
                                   -y
Beta(5,5)
  2 -
                                                                 type
dsn
                                                                  — skewed
                                                                  ---- symmetric
  1 -
  0 -
                  0.25
                                             0.75
     0.00
                                0.50
                                                           1.00
                                х
## write a skewness function based on a sample x
skew <- function(x) {</pre>
        YOUR TURN (should return Jb)
}
## check skewness of some samples
n <- 100
al <- rbeta(n, 6, 2)
a2 <- rbeta(n, 2, 6)
```

```
## two symmetric samples
b1 <- rnorm(100)
b2 <- rnorm(100)</pre>
```

```
ggplot() + geom_histogram(aes(a2)) + xlab("Beta(2, 6)") +
ggtitle(paste("Skewness = "))
ggplot() + geom_histogram(aes(b1)) + xlab("N(0, 1)") +
ggtitle(paste("Skewness = "))
ggplot() + geom_histogram(aes(b2)) + xlab("N(0, 1)") +
ggtitle(paste("Skewness = "))
```


Assess the P(Type I Error) for alpha = .05, n = 10, 20, 30, 50, 100, 500

Example 2.3 (Pearson's moment coefficient of skewness with variance correction) One way to improve performance of this statistic is to adjust the variance for small samples. It can be shown that

$$Var(\sqrt{b_1})=rac{6(n-2)}{(n+1)(n+3)}$$

Assess the Type I error rate of a skewness test using the finite sample correction variance.