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Chapter 7: Monte Carlo Methods in Inference
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Monte Carlo methods may refer to any method in statistical inference or numerical analy-

sis were simulation is used.
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We have so far learned about Monte Carlo methods for estimation.
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We will now look at Monte Carlo methods to estimate coverage probability for confidence
intervals, Type I error of a test procedure, and_power of a test. _ {
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In statistical inference there is uncertainty in an estimate. We will use repeated sampling
(Monte Carlo methods) from a given probability model to investigate this uncertainty.
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1 Monte Carlo Estimate of Coverage

1.1 Confidence Intervals

Recall from your intro stats class that a 95/confidence interval for u (when o is known and
X1, Xn < N, 02)) is of the form
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Mathematical interpretation: co~fdeace
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1.2 Vocabulary 3

Definition 1.1 For X;,..., X, “ N(u,0?), o known, the (1 — a)lOOZconﬁdence interval

for p is

where
o
Z-2 = 1-— % quantile of N(0,1). = 5[”0//1'\ ( \ - 2 )

In general,
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So, if we have formulas for L and U, we can use Monte Carlo integration to estimate c.
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An estimate ofxlf;Ja tells us about the behavior of our estimator [L, U] in | practice, .
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4 1 Coverage

1.3 Algorithm

Let X ~ Fx and 6 is the parameter of interest.

Example 1.1
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Consider a confidence interval for 8, C = [L, U]. (/F,O,\/\ STt ﬂ@f:j>

Then, a Monte Carlo Estimator of Coverage could be obtained with the following
algorithm.
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1.4 Motivation

1.4 Motivation

Why do we want empirical and nominal coverage to match?
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Example 1.3 Estimates of [L, U] have variance that is smaller than it should be.
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Example 1.4 Estimates of [L, U] have variance that is larger than it should be.
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6 1 Coverage

Your Turn

We want to examine empirical coverage for confidence intervals of the mean.

g

1. Coverage for CI for u when o is known, (m Ry 1L +2a %)
iid Y
a. Simulate X1,..., X, ~ N(0,1). Compute the empirical coverage for a 95%on-
fidence interval for n = 5 using m = 1000 MC samples.

b. Plot 100 confidence intervals using geom segment () and add a line indicat-
ing the true value for g = 0. Color your intervals by if they contain y or not.

c. Repeat the Monte Carlo estimate of coverage 100 times. Plot the distribution
of the results. This is the Monte Carlo estimate of the distribution of the
coverage.

2. Repeat part 1 but without o known. Now you will plug in an estimage for o (using
sd()) when you estimate the CI using the same formula that assumes ¢ known.
What happens to the empirical coverage? What can we do to improve the coverage?
Now increase n. What happens to coverage?

3. Repeat 2a. when the data are distributed Unif[—1, 1] and variance unknown. What
happens to the coverage? What can we do to improve coverage in this case and why?



