when we say something about a population from a sample.

Chapter 7: Monte Carlo Methods in Inference

Monte Carlo methods may refer to any method in statistical inference or numerical analysis were simulation is used.

We have so far learned about Monte Carlo methods for estimation. () Estimated $\theta = (h(x)dx$ by rewriting $\theta = Eg(x), x \in f$ and sampling $X_{(1-r)}, X_m \stackrel{\text{id}}{\to} f$, $\hat{\theta} = \frac{1}{m} \sum_{i=1}^{m} g(\hat{x}_i)$. (2) Estimated $Var \hat{\theta} = \frac{Var g(X)}{m}, \text{ sampled } X_{(1-r)}X_m \sim f$, $\hat{Var}(\hat{\theta}) = \frac{1}{m} \frac{1}{m} \sum_{i=1}^{m} (g(x_i) - \hat{\theta})^2$

We will now look at Monte Carlo methods to estimate coverage probability for confidence intervals, Type I error of a test procedure, and power of a test.

In statistical inference there is uncertainty in an estimate. We will use repeated sampling (Monte Carlo methods) from a given probability model to investigate this uncertainty.

This is also called a "parametric bootstrap" where he simulate from a process that generated the data - repeatedly sample under identical conditions - to have a close replica of the process reflected in the sample.

1 Monte Carlo Estimate of Coverage

1.1 Confidence Intervals

Recall from your intro stats class that a 95[°]/₂ confidence interval for μ (when σ is known and $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$) is of the form

$$\left(\begin{array}{c}\overline{x} - 1.96 \quad \overbrace{\sqrt{n}}^{6} \\ L \end{array}\right) \quad \begin{array}{c}\overline{x} + 1.96 \quad \overbrace{\sqrt{n}}^{6} \\ U \end{array}\right)$$

Interpretation:

Comments:

- 1. (L, U) are derived from statistical theory.
- 2. (L, V) are statistics (computed from data). If I collect new data, I get (L, U)

Mathematical interpretation: Co-fidence

$$P(\bar{X} - 1.96 \frac{\sigma}{J_{n}} < \mu < \bar{X} + 1.96 \frac{\sigma}{J_{n}}) = 0.95$$

$$\iff P(-1.96 < \frac{\bar{X} - \mu}{6/J_{n}} < 1.96) = 0.95$$

where by
$$CLT = \frac{X - \mu}{6/5\pi} \sim N(0,1)$$
.
 $1.96 = \frac{-x^2/2}{\sqrt{2\pi}} = \frac{0.95}{\sqrt{2\pi}} = \frac{0.95}{\sqrt{2\pi}} = \frac{0.95}{\sqrt{2\pi}} = \frac{1}{2} \operatorname{reed} \frac{1}{\sqrt{2}} \operatorname{stringte}!$

Definition 1.1 For $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, σ known, the $(1 - \alpha)100$ confidence interval for μ is

$$\left(\overline{x}-z_{1-rac{lpha}{2}}rac{\sigma}{\sqrt{n}},\overline{x}+z_{1-rac{lpha}{2}}rac{\sigma}{\sqrt{n}}
ight),$$

where

$$z_{1-rac{lpha}{2}} = 1 - rac{lpha}{2}$$
 quantile of $N(0,1)$. = qnorm $\left(1 - rac{lpha}{2} \right)$.

In general,

$$P(L \angle \theta \leq U) = |-d|$$
 (an integral!).

So, if we have formulas for L and U, we can use Monte Carlo integration to estimate α . An estimate of $1 - \alpha$ tells us about the behavior of our estimator [L, U] in practice, $1-\alpha$ is from asymptotic freq. **1.2 Vocabulary 1.2 Vocabulary**

We say $P(L < \theta < U) = P(\text{CI contains } \theta) = 1 - \alpha$.

 $1-\alpha = nominal (noned) coverage$

$$1 - \hat{\alpha} = empirical coverage$$

= simulation based estimate of the proportion of time that the
CI contains Θ .

or l-a

1.3 Algorithm

Let $X \sim F_X$ and θ is the parameter of interest.

Example 1.1

Let X~N(M, I), m is the parameter of interest.

Consider a confidence interval for θ , C = [L, U]. (From Start Heary)

Then, a Monte Carlo Estimator of Coverage could be obtained with the following algorithm.

a) For
$$j = 1, ..., M$$

(1) Sample $X_{1,2}^{(j)} \to Y_{n}^{(j)} \to F$
(2) Compute $C_{j} = EL_{j,2}U_{j}$]
(3) $\gamma_{j}^{*} = T [\theta \in C_{j}] = T [L_{j} < \theta < U_{j}]$
(5) $1 - \hat{\alpha} = \frac{1}{m} \sum_{j=1}^{m} \gamma_{j}^{*} = empirical (overage)$

1.4 Motivation

Why do we want empirical and nominal coverage to match?

Because it suggests our stated & is accurate.
Example 1.2 Estimates of [L, U] are biased.

$$\Rightarrow$$
 corrage will be low
"I thought my method was 95% accurate,
Lut it was 0% accurate")
 $w = 0$

Example 1.3 Estimates of [L, U] have variance that is smaller than it should be.

Example 1.4 Estimates of [L, U] have variance that is larger than it should be.

Your Turn

We want to examine empirical coverage for confidence intervals of the mean.

- 1. Coverage for CI for μ when σ is known, $\left(\overline{x} z_{1-\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}, \overline{x} + z_{1-\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right)$.
 - a. Simulate $X_1, \ldots, X_n \stackrel{iid}{\sim} N(0, 1)$. Compute the empirical coverage for a 95 confidence interval for n = 5 using m = 1000 MC samples.
 - b. Plot 100 confidence intervals using geom_segment() and add a line indicating the true value for $\mu = 0$. Color your intervals by if they contain μ or not.
 - c. Repeat the Monte Carlo estimate of coverage 100 times. Plot the distribution of the results. This is the Monte Carlo estimate of the distribution of the coverage.
- 2. Repeat part 1 but without σ known. Now you will plug in an estimage for σ (using sd()) when you estimate the CI using the same formula that assumes σ known. What happens to the empirical coverage? What can we do to improve the coverage? Now increase *n*. What happens to coverage?
- 3. Repeat 2a. when the data are distributed Unif[-1, 1] and variance unknown. What happens to the coverage? What can we do to improve coverage in this case and why?