
Chapter 7: Monte Carlo Methods in Inference
Monte Carlo methods may refer to any method in statistical inference or numerical analyÅ
sis were simulation is usedµ

We have so far learned about Monte Carlo methods for estimationµ

We will now look at Monte Carlo methods to estimate coverage probability for con�dence
intervals, Type I error of a test procedure, and power of a testµ

In statistical inference there is uncertainty in an estimateµ We will use repeated sampling
ÁMonte Carlo methodsÂ from a given probability model to investigate this uncertaintyµ
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This is also called a
"

parametric bootstrap " where we simulate

from a process
that generated the data - repeatedly sample under

identical conditions - to hare a close replica of the process
reflected in the sample .
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1 Monte Carlo Estimate of Coverage

1.1 Con�dence Intervals

Recall from your intro stats class that a  con�dence interval for  Áwhen  is known and
Â is of the form

Interpretation:

Comments:

1. 

2. 

Mathematical interpretation:

%

( I - 1.96 ET , It 1.96¥ )
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If I repeated the study 100 times and computed CI for each

using the above formula, I expect about 95 of the CI 's to include

the true mean µ .

( L , U) are derived from statistical theory .

( L
,
V) are statistics ( computed from data) . If I collect new

data
, I get Chiu )

confidence

PCI - 1.967 < µ - 5+1.96E) = g. of
'em

⇐ Pf- 1.96 e Ijf s 1.967=0.95

where by CLT
I - µ
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with real data , this may
not be exact

⇒ need'%sl !



�µ� Vocabulary �

De{nition �µ� For °  known° the  con{dence interval
for  is

where

In general°

So° if we have formulas for  and ° we can use Monte Carlo integration to estimate µ

An estimate of  tells us about the behavior of our estimator  in practiceµ

�µ� Vocabulary

We say 

%

= qnorm ( l - E ) .

Let [L
,
U ] be a CI for parameter A , then

f. ( L LALU ) = I - a ( an integral ! ) .
or

, - a .

←

←←
from stat theory

in Fr assumptions
1-a is from asymptotic theory .

about our data reasonable ?

^ tI the

statistic value

nominal (named) coverage

empirical coverage

= simulation based estimate of he proportion of time that the

CI contains 0 .



4 1 Coverage

1µ3 Algorithm

Let  and  is the parameter of interestµ

Example 1µ1

Consider a con�dence interval for ° µ

Then° a Monte Carlo Estimator of Coverage could be obtained with the following
algorithmµ

Let X ~ NIM, l) , er is the parameter of interest.

From stat theory)

a) For j -- I, . - you

① sample Xi 's . ., Xi" ref

② Compute Cj = [ Lj , Uj )

③ Yi -- I [ O e G) = I [Lj s a cu;]
b) I - I = mt Yi = empirical leverage .
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1.4 Motivation

Why do we want empirical and nominal coverage to match¶

Example 1.2 Estimates of  are biased.

Example 1.3 Estimates of  have variance that is smaller than it should be.

Example 1.4 Estimates of  have variance that is larger than it should be.

Because it suggests our stated h is accurate .
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(ex .

100% of GPAs are between o ad y)



� � Coverage

Your Turn
We want to evamine empirical coverage for con{dence intervals of the meanµ

�µ Coverage for CI for  when  is known° µ

aµ Simulate µ Compute the empirical coverage for a  conÅ
{dence interval for  using  MC samplesµ

bµ Plot ��� con{dence intervals using geRm_VegmenW() and add a line indicatÅ
ing the true value for µ Color wour intervals bw if thew contain  or notµ

cµ Repeat the Monte Carlo estimate of coverage ��� timesµ Plot the distribution
of the resultsµ This is the Monte Carlo estimate of the distribution of the
coverageµ

�µ Repeat part � but without  knownµ Now wou will plug in an estimage for  Áusing
Vd()Â when wou estimate the CI using the same formula that assumes  knownµ
What happens to the empirical coverage¶ What can we do to improve the coverage¶
Now increase µ What happens to coverage¶

�µ Repeat �aµ when the data are distributed  and variance unknownµ What
happens to the coverage¶ What can we do to improve coverage in this case and whw¶

Y %


