
Chapter 7: Monte Carlo Methods in Inference
Monte Carlo methods may refer to any method in statistical inference or numerical analy-
sis were simulation is used.

We have so far learned about Monte Carlo methods for estimation.

We will now look at Monte Carlo methods to estimate coverage probability for con�dence
intervals, Type I error of a test procedure, and power of a test.

In statistical inference there is uncertainty in an estimate. We will use repeated sampling
(Monte Carlo methods) from a given probability model to investigate this uncertainty.
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This is also called a
"

parametric bootstrap " where we simulate

from a process
that generated the data - repeatedly sample under

identical conditions - to hare a close replica of the process
reflected in the sample .
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1 Monte Carlo Estimate of Coverage

1.1 Con dence Intervals

Recall from your intro stats class that a  con dence interval for  (when  is known and
) is of the form

Interpretation:

Comments:

1. 

2. 

Mathematical interpretation:

%

( I - 1.96 ET , It 1.96¥ )
L U

If I repeated the study 100 times and computed CI for each

using the above formula, I expect about 95 of the CI 's to include

the true mean µ .

( L , U) are derived from statistical theory .

( L
,
V) are statistics ( computed from data) . If I collect new

data
, I get Chiu )

confidence

PCI - 1.967 < µ - 5+1.96E) = g. of
'em

⇐ Pf- 1.96 e Ijf s 1.967=0.95

where by CLT
I - µ
IN Nlo , D .
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with real data , this may
not be exact
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De nition 1.1 For ,  known, the  con dence interval
for  is

where

In general,

So, if we have formulas for  and , we can use Monte Carlo integration to estimate .

An estimate of  tells us about the behavior of our estimator  in practice.

1.2 Vocabulary

We say 

%

= qnorm ( l - E ) .

Let [L
,
U ] be a CI for parameter A , then

f. ( L LALU ) = I - a ( an integral ! ) .
or

, - a .

←

←←
from stat theory

in Fr assumptions
1-a is from asymptotic theory .

about our data reasonable ?

^ tI the

statistic value

nominal (named) coverage

empirical coverage

= simulation based estimate of he proportion of time that the

CI contains 0 .
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1.3 Algorithm

Let  and  is the parameter of interest.

Example 1.1

Consider a con�dence interval for , .

Then, a Monte Carlo Estimator of Coverage could be obtained with the following
algorithm.
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1.4 Motivation

Why do we want empirical and nominal coverage to match?

Example 1.2 Estimates of  are biased.

Example 1.3 Estimates of  have variance that is smaller than it should be.

Example 1.4 Estimates of  have variance that is larger than it should be.
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Your Turn
We want to examine empirical coverage for con dence intervals of the mean.

1. Coverage for CI for  when  is known, .

a. Simulate . Compute the empirical coverage for a  con-
dence interval for  using  MC samples.

b. Plot 100 con dence intervals using geom_segment() and add a line indicat-
ing the true value for . Color your intervals by if they contain  or not.

c. Repeat the Monte Carlo estimate of coverage 100 times. Plot the distribution
of the results. This is the Monte Carlo estimate of the distribution of the
coverage.

2. Repeat part 1 but without  known. Now you will plug in an estimage for  (using
sd()) when you estimate the CI using the same formula that assumes  known.
What happens to the empirical coverage? What can we do to improve the coverage?
Now increase . What happens to coverage?

3. Repeat 2a. when the data are distributed  and variance unknown. What
happens to the coverage? What can we do to improve coverage in this case and why?


