
Chapter 6: Monte Carlo Integration
Monte Carlo integration is a statistical method based on random sampling in order to apÅ
proximate integralsµ This section could alternatively be titled°

ÌIntegrals are hard° how can we avoid doing them¶Í
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1 A Tale of Two Approaches
Consider a oneÅdimensional integralµ

The value of the integral can be derived analytically only for a few functions° µ For the
rest° numerical approximations are often usefulµ

Why is integration important to statistics¶

1µ1 Numerical Integration

Idea¯ Approximate  via the sum of many polygons under the curve µ

To do this° we could partition the interval  into  subintervals  for 
 with  and µ

Within each interval° insert  nodes° so for  let  for ° then

for some set of constants° µ
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Mary quantities of interest in inferential statistics can be expressed as the

expectation ofa froth of a r. r.
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1µ2 Monte Carlo Integration

How do we compute the mean of a distribution¶

Example 1µ1 Let  and µ

Theory

x <- seq(0, 1, length.out = 1000)
f <- function(x, a, b) 1/(b - a)
ggplot() + 
  geom_line(aes(x, f(x, 0, 1))) +
  \lim(c(0, 1.5)) +
  ggtitle("Uniform(0, 1)")

y <- seq(10, 20, length.out = 1000)
ggplot() + 
  geom_line(aes(y, f(y, 10, 20))) +
  \lim(c(0, 1.5)) +
  ggtitle("Uniform(10, 20)")
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How
about a dsn tht looks

like

Mhm ??
Probably on 't do this

in closed form .

✓ need to approximate .
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= parameter ( unknown ) .

= estimate , of 0 ,
statistic ( sometimes we write I

,
5

,
etc

.
instead of d )

.

= sampling distribution

= on average ,
what is the role af I ?

theoretical mean of the distribution of £ ( sampling dsn ) .

- = theoretical variance of £
variance of the sampling dsn of £ .

7 = estimated mean of dsa of f-
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= TIE) = theoretical se. of I = Sd of sampling dsn of E .

>
-
-TVE = estimated se of E -

- estimated Sd of sampling din
off .

Computer simulation that generates a large number of samples from a

distribution . the distribution characterizes the population from which the

sample is drawn .

( sounds a lot like ch . 3) .
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1µ2µ� Monte Carlo Integration

To approximate ° we can obtain an iid random sample 
from  and then approximate  via the sample average

Example 1µ2 Again° let  and µ To estimate  and 
 using a Monte Carlo approach°

Now consider µ

The Monte Carlo approximation of  could then be obtained by

1µ 

2µ 

I ①
parameter
characterizes ②

apopulation .

was:
'Em. E -

- mt Epi a Ex
to estimate .

① draw Xi , . . , Xm
~ Uniflo, I ) .

② compute E =L ?? I ① draw Y
' ' - ' ' Ym ~ Unit Clo, 20)

Xi ② Compute f- = ut Eg Yi

This is useful when we can
't compute + EX

'h closed form
.
Also useful for approximating

other integrals .

Draw Xi , - . , Xmrv f-

Compute I = mt gcxi)
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De�nition �µ� Monte Carlo integration is the statistical estimation of the value of an inteÅ
gral using evaluations of an integrand at a set of points drawn randomly from a distirbuÅ
tion with support over the range of integrationµ

Example �µ�

Why the mean¶

Let ° then

and° by the strong law of large numbers°

Example �µ� Let ° where ° and assume  has �nite exÅ
pectation under µ Then

We can estimate this using a Monte Carlo approachµ

-

① parameter estimation
e
.

Linear models rs
. generalized liker models.

Y = XpTE
EN N ( 0c64

, § = C×txT' XTY closed form solution .

Gim : You Biron Cp)
logit Cp) = pot fix →

no estimates for Po ad f ,
in closed form.

④ estimate quantities of a dsn . Find y et. 0.9 = ⇐ffx) da.

drew
Xi iidton f

m times

rn

ECI) - Ef't E. glxiD-mtEEglxil-FI.EEgcx) -- I Cotai. . - of = 0.

So E is unbiased
.

f- = II. gcxi ) -5 ECGCXD =a

So I is consistent
.

"
Ekg CX) - E#xD?]

we may
want to approximate

sampling variance of
£

.

Tar (g CX)) = Efycxy) Vac EI --vorft.E.gcxiD-IE.uagcxi)

① Sample Xi , - - , Xm from f-
= tu var g Cx) .

② Compute mt (gcxi ) - of)
' to estimate

,

Approximate ! we don't
knew this . Voir CE) = Im . Varg CX) .

we can replace it with E
-

- IE,gCxi) .
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When Var g CX) exists and is finite
,

the CLT States
.

E-Eo→d
N Con) as m-so .
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if m is large ,
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We can use this to put confidence
limits or error bounds

on te MC estimate of te integral Q.

We can do inference on the integral 0 !
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Monte Carlo integration provides slow convergence, i.e. even though by the SLLN we
know we have convergence, it may take us a while to get there.

But, Monte Carlo integration is a very powerful tool. While numerical integration methods
are dif{cult to extend to multiple dimensions and work best with a smooth integrand,
Monte Carlo does not suffer these weaknesses.

1.2.4 Algorithm

The approach to {nding a Monte Carlo estimator for  is as follows.

1. 

2. 

3. 

4. 

Example 1.5 Estimate .
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Example 1µ7 Monte Carlo integration for the standard Normal cdfµ Let ° then
the pdf of  is

and the cdf of  is

We will look at 3 methods to estimate  for µ
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1µ2µ5 Inference for MC Estimators

The Central Limit Theorem implies

So° we can construct con�dence intervals for our estimator

1µ 

2µ 

But we need to estimate µ
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So° if  then µ How much does changing  matter¶

Example 1µ� If the current  based on  samples° how many more samples do

we need to get ¶

Is there a better way to decrease the variance¶ Yes²


