
Chapter 3: Methods for Simulating Data
Statisticians (and other users of data) need to simulate data for many reasons.

For example, I simulate as a way to check whether a model is appropriate. If the observed
data are similar to the data I generated, then this is one way to show my model may be a
good one.

It is also sometimes useful to simulate data from a distribution when I need to estimate an
expected value (approximate an integral).

R can already generate data from many (named) distributions:

##  [1] -1.0365488  0.6152833  1.4729326 -0.6826873 -0.6018386 -1.3526097 
##  [7]  0.8607387  0.7203705  0.1078532 -0.5745512

##  [1] -4.5092359  0.4464354 -7.9689786 -0.4342956 -5.8546081  2.7596877 
##  [7] -3.2762745 -2.1184014  2.8218477 -5.0927654

##  [1] 0.67720831 0.04377997 5.38745038 0.48773005 1.18690322 0.92734297 
##  [7] 0.33936255 0.99803323 0.27831305 0.94257810

But what about when we don’t have a function to do it?

set.seed(400) #reproducibility

rnorm(10) # 10 observations of a N(0,1) r.v.

rnorm(10, 0, 5) # 10 observations of a N(0,5^2) r.v.

rexp(10) # 10 observations from an Exp(1) r.v.

- ch . S

o
-

↳
we need to write our own functions to simulate

draws from distributions .
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1 Inverse Transform Method
Theorem 1.1 (Probability Integral Transform) If  is a continuous r.v. with cdf , then 

.

This leads to to the following method for simulating data.

Inverse Transform Method:

First, generate  from Uniform . Then,  is a realization from .

Note: 

1.1 Algorithm

1. Derive the inverse function . 

2. Write a function to compute . 

3. For each realization,

a. 

b. 
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Typically repeat a- b many times
.
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Example 1.1 Simulate a random sample of size  from the pdf .

1. 

2. 

3. 

1.2 Discrete RVs

If  is a discrete random variable and  are the points of discontinuity
of , then the inverse transform is  where . This
leads to the following algorithm:

1. Generate a r.v.  from Unif .

2. Select  where .

# write code for inverse transform example
# f_X(x) = 3x^2, 0 <= x \<= 1

Find the Cdf f.
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'
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Example 1.2 Generate 1000 samples from the following discrete distribution.

x 1.0 2.0 3.0
f 0.1 0.2 0.7

x <- 1:3
p <- c(0.1, 0.2, 0.7)

# write code to sample from discrete dsn
n <- 1000

-

There is a simpler way using sample C) function
in R

.

* Remember to allow replacement and specify
the probability vector if using sample 4 A
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2 Acceptance-Reject Method
The goal is to generate realizations from a target density, .

Most cdfs cannot be inverted in closed form.

The Acceptance-Reject (or “Accept-Reject”) samples from a distribution that is similar to 
 and then adjusts by only accepting a certain proportion of those samples.

The method is outlined below:

Let  denote another density from which we know how to sample and we can easily calcu-
late .

Let  denote an envelope, having the property  for all 
 for a given constant .

The Accept-Reject method then follows by sampling  and .

If , accept . Set  and consider  to be an element of the target
random sample.

Note:  is the expected proportion of candidates that are accepted.

2.1 Algorithm

1. Find a suitable density  and envelope .

2. Sample .

3. Sample .

4. If , accept .

5. Repeat from Step 2 until you have generated your desired sample size.

ISonething
we can do if we

can 't find F
' in closed form

same g-
see:: Iii:

iii. inn .

- ⇒ we can 't use inverse ten storm method,

y
⇒ we reject the rest.target

① ②

← target pdf
-

xx

support of g
must include the

Tent support of f.

-

we can use this to evaluate the efficiency of the algorithm.
what might be hard/slow?

← findingact slow : we may throw away
a lot of draws - depending

oh . on efficiency-

hard : finding e C )
.

* Requirement e. the support of g Must include the support of f. * .

(BAD) Example : tf f
I NCO

, 2) and g
I unit C- lo, lo) .
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Gao)

Xg = C- locks .
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2.2 Envelopes

Good envelopes have the following properties:

A simple approach to nding the envelope:

and '
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① Envelope exceeds target everywhere ← support of g must
include M

② Easy to sample from g and easy to evaluate . Support of t.

③ Generate few rejected draws ( save time) .
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Example 2.1 We want to generate a random variable with pdf , 
. This is a Beta  distribution.

Can we invert  analytically?

If not, �nd the maximum of .

# pdf function, could use dbeta() instead
f <- function(x) {
    60*x^3*(1-x)^2
}

# plot pdf
x <- seq(0, 1, length.out = 100)
ggplot() +
  geom_line(aes(x, f(x)))

- - could just use n beta in R
.

NO.
-

f.
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envelope <- function(x) {
  ## create the envelope function
}

# Accept reject algorithm
n <- 1000 # number of samples wanted
accepted <- 0 # number of accepted samples
samples <- rep(NA, n) # store the samples here

while(accepted < n) {
  # sample y from g
  
  # sample u from uniform(0,1)
  u <- runif(1)
  
  if(u < f(y)/envelope(y)) {
    # accept
    accepted <- accepted + 1
    samples[accepted] <- y
  }
}

ggplot() +
  geom_histogram(aes(sample, y = ..density..), bins = 50, ) +
  geom_line(aes(x, f(x)), colour = "red") +
  xlab("x") + ylab("f(x)")

←
Co uniflora) pdf

fig = c. I

= f ( 3157 .

empty erector of length n .

← while we don't have enough accepted samples,

Y ← runifCD.
← unit co . D .

keep going .

← calculating the proportion .

← increment accepted so my Coop
ends

eventually .
← store accepted scruple .

plot histogram of samples w/
turreted pdf on top .

or
fescue

scale
as
the

← necessary
so
fat

histogram
is

¢
samples .AE?fed from accept - reject

.

density
instead of
raw counts

.

-

theoretical-7 T important for your hw !pdt J
rig y

labels
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2.3 Why does this work?

Recall that we require

Thus,

The larger the ratio , the more the random variable  looks like a random variable
distributed with pdf  and the more likely  is to be accepted.

2.4 Additional Resources

See p.g. 69-70 of Rizzo for a proof of the validity of the method.

et) and require
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O # fly) I
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"
come read in Ott or in library on reserve

.
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3 Transformation Methods
We have already used one transformation method – Inverse transform method – but there
are many other transformations we can apply to random variables.

1. If , then 

2. If  and  are independent, then 

3. If  and  are independendent, then 

4. If  and  are independent, then 

De nition 3.1 A transformation is any function of one or more random variables.

Sometimes we want to transform random variables if observed data don’t t a model that
might otherwise be appropriate. Sometimes we want to perform inference about a new
statistic.

Example 3.1 If . What is the distribution of ?

Example 3.2 If , what is the distribution of ?

Example 3.3 For  iid random variables, what is the distribution of the median
of ? What is the distribution of the order statistics? ?

There are many approaches to deriving the pdf of a transformed variable.
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←
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"
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But the theory isn’t always available. What can we do?

3.1 Algorithm

Let  be a set of independent random variables with pdfs , respec-

tively, and let  be some transformation we are interested in simulating from.

1. Simulate .

2. Compute . This is one draw from .

3. Repeat Steps 1-2 many times to simulate from the target distribution.

Example 3.4 It is possible to show for , . Imag-

ine that we cannot use the rchisq function. How would you simulate ?

library(tidyverse)

# function for squared r.v.s
squares <- function(x) x^2

sample_z <- function(n, p) {
  # store the samples
  samples <- data.frame(matrix(rnorm(n*p), nrow = n))

  samples %>% 
    mutate_all("squares") %>% # square the rvs
    rowSums() # sum over rows
}

# get samples
n <- 1000 # number of samples

# apply our function over different degrees of freedom
samples <- data.frame(chisq_2 = sample_z(n, 2),
                      chisq_5 = sample_z(n, 5),
                      chisq_10 = sample_z(n, 10),

Statistical

Use computationalmethods
to simulate from the transformed

distribution
.

① I either be straight
forward (named)

could use inverse method , accept-reject.

parameter
of X
'd"

a domgauge
"
ot

-
controls

shape
of dsn

.

I
. Sample p draws from the NCO, D .

2 , square all X
's
,
sum them up. EXE

3 . Repeat l - 2
.

c-
we

can
change p

- p
= # r .v.

'
s
,

df of X-p .

←
this is n samples

of

p
iid Nco , D

n. v.
s
.

9 their will add up the p squad X 's
,
n times .
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                      chisq_100 = sample_z(n, 100))

# plot results
samples %>%
  gather(distribution, sample, everything()) %>% # make easier to 
plot w/ facets

  separate(distribution, into = c("dsn_name", "df")) %>% # get the df
  mutate(df = as.numeric(df)) %>% # make numeric
  mutate(pdf = dchisq(sample, df)) %>% # add density function values 
  ggplot() + # plot
  geom_histogram(aes(sample, y = ..density..)) + # samples
  geom_line(aes(sample, pdf), colour = "red") + # true pdf
  facet_wrap(~df, scales = "free")

←
wide

data
→
tall data

✓
degrees
of freedom

f- adds

← remember to plot on te some seal . the density

in red
,

valves

¥tscales for each df Scales =

"

free
- y

" scale, =
"

free -x
"

xitxi Ht . - txs

Xf t . -Xiao Xie - TXToo
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4 Mixture Distributions

The faithful dataset in R contains data on eruptions of Old Faithful (Geyser in Yellow-

stone National Park).

##   eruptions waiting 
## 1     3.600      79 
## 2     1.800      54 
## 3     3.333      74 
## 4     2.283      62 
## 5     4.533      85 
## 6     2.883      55

What is the shape of these distributions?

head(faithful)

faithful %>%
  gather(variable, value) %>%
  ggplot() +
  geom_histogram(aes(value), bins = 50) +
  facet_wrap(~variable, scales = "free")

A special transformation .

length:#us , waiting Yuet erupt
"

bimodal .

Anna
Bimodal
i. e .

two modes .
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De nition 4.1 A random variable  is a discrete mixture if the distribution of  is a
weighted sum  for some sequence of random variables  and 

 such that .

For  r.v.s,

does
not mean discrete dsn .

e-
-

un

/
t
summing

weights "If"Ii¥-nations.

Stx) = of
*
tht ft -otfxzcxl .

two different
distributions .

How do we simulate from this distribution?

✓
with pro

la hit z
Q

.

There are two sources of variability .

You Bernoulli ( o) .

Then if { 3--1
Xnfx

,

y
-

-o Xnfxz
.
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Example 4.1

4.1 Mixtures vs. Sums

Note that mixture distributions are not the same as the distribution of a sum of r.v.s.

x <- seq(-5, 25, length.out = 100)

mixture <- function(x, means, sd) {
  # x is the vector of points to evaluate the function at
  # means is a vector, sd is a single number
  f <- rep(0, length(x))
  for(mean in means) { 
    f <- f + dnorm(x, mean, sd)/length(means) # why do I divide?
  }
  f
}

# look at mixtures of N(mu, 4) for different values of mu
data.frame(x, 
           f1 = mixture(x, c(5, 10, 15), 2), 
           f2 = mixture(x, c(5, 6, 7), 2),
           f3 = mixture(x, c(5, 10, 20), 2),
           f4 = mixture(x, c(1, 10, 20), 2)) %>%
  gather(mixture, value, -x) %>%
  ggplot() +
  geom_line(aes(x, value)) +
  facet_wrap(.~mixture, scales = "free_y")

directer of means

← storage container H store pdf vibes .

" I am equally mightily each dsn
.

We don't have to equally night, we just
need Efi -4 )

.

Ah
.

*

Anna

mixtures are weighted sups of distributions .

NOT distributions of weighted Suns !
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Example 4.2 Let  and , independent.

 such that .

What about ?

n <- 1000
u <- rbinom(n, 1, 0.5)

z <- u*rnorm(n) + (1 - u)*rnorm(n, 4, 1)

ggplot() +
  geom_histogram(aes(z), bins = 50)

T

da" Yohan .

Els) -- Eftzlxitxal )
= If Ext D= I ( Oth) = 2 .

Var ( s) -- var ( thx .tw)
"

utfvarxitvarxzl -- FLI ti) = I

can show in fact that 5- Ifxitxa) n N(2 ,
÷)

Q
° to

← choose which dsn we sample from w/ 0=015 ,

mom Nail )

s

i
-f x

( l

l
l /

/ I

AA
'
-
-

quit 1-0--0.3 " with probability
"

change UE-rbin.com ( n , I, o . t ) to choose f×
,
hip .

0.7
.
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4.2 Models for Count Data (refresher)

Recall that the Poisson  distribution is useful for modeling count data.

Where  number of events occuring in a xed period of time or space.

When the mean  is low, then the data consists of mostly low values (i.e. , etc.) and
less frequently higher values.

As the mean count increases, the skewness goes away and the distribution becomes ap-
proximately normal.

With the Poisson distribution,

Example 4.3

Example 4.4 The Colorado division of Parks and Wildlife has hired you to analyze their
data on the number of sh caught in Horsetooth resevoir by visitors. Each visitor was
asked - How long did you stay? - How many sh did you catch? - Other questions: How
many people in your group, were children in your group, etc.

Some visiters do not sh, but there is not data on if a visitor shed or not. Some visitors
who did sh did not catch any sh.

Note, this is modi ed from https://stats.idre.ucla.edu/r/dae/zip/.

fish <- read_csv("https://stats.idre.ucla.edu/stat/data/fish.csv")

i
.

I v

.

.
.

-
-

A low

in

high X .

shape of teds. !
.

- # of meows in a 2 minute cat video on youtube.

- ft of baskets made in a minute.

- # of cars that drive by during class .
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# with zeroes
ggplot(fish) + geom_histogram(aes(count), binwidth = 1)

# without zeroes
fish %>%
  filter(count > 0) %>%
  ggplot() + 
  geom_histogram(aes(count), binwidth = 1)

y
# of far!ght by

•phony .

" ""
"
"

"

4
this may

look more

like a poisson
(with

some
outliers) .
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A zero-in�ated model assumes that the zero observations have two different origins –
structural and sampling zeroes.

Example 4.5

A zero-in�ated model is a mixture model because the distribution is a weighted average of
the sampling model (i.e. Poisson) and a point-mass at .

For ,

So that,

To simulate from this distribution,

n <- 1000
lambda <- 5
pi <- 0.3

u <- rbinom(n, 1, pi)
zip <- u*0 + (1-u)*rpois(n, lambda)

- - -7 a zero is possible and occurs by random
↳ A non - zero valve is chance

.

impossible .

Outcome of a study = # of cows w/ foot and mouth disease f-MB) per region in Turkey.

↳ structural zeroes - here are no cows in a region .

↳ sampling zeroes - cows in region , but no FMD.

Key point : you don't know whether region has no cows or no disease
.

-

-

T structural zeroes

{
0 up .

it t Cl -t) exp C -H

K w
. p . ( l -T) 9kexp¥ K-- I , 2 , .

- -
-

2-~ Bernoulli CH)

if Z -

- O
,

y - Poisson 177

If 2- = I
,
4=0

← how many samples

← fix X

← fix IT

T t
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# zero inflated model
ggplot() + geom_histogram(aes(zip), binwidth = 1)

# Poisson(5)
ggplot() + geom_histogram(aes(rpois(n, lambda)), binwidth = 1)

get
:*:


