Chapter 3: Methods for Simulating Data

Statisticians (and other users of data) need to simulate data for many reasons.
For example, I simulate as a way to check whether a model is appropriate. If the observed data are similar to the data I generated, then this is one way to show my model may be a good one.

It is also sometimes useful to simulate data from a distribution when I need to estimate an expected value (approximate an integral). \qquad
R can already generate data from many (named) distributions:

```
set.seed(400) #reproducibility
    rnorm(10) # 10 observations of a N(0,1) r.v.
## [r1] -1.0365488
rnorm(10, 0, 5) # 10 observations of a N(0,5^2) r.v.
## [1] -4.5092359 0.4464354 -7.9689786 -0.4342956 -5.8546081 2.7596877
## [7] -3.2762745 -2.1184014 2.8218477 -5.0927654
rexp(10) # 10 observations from an Exp(1) r.v.
## [1]] 0.67720831 
```

But what about when we don't have a function to do it?

$$
\begin{aligned}
& \rightarrow \text { we need to write our own functions to simulate } \\
& \text { draws from distributions. }
\end{aligned}
$$

1 Inverse Transform Method
"PIT"

Theorem 1.1 (Probability Integral Transform) If X is a continuous r.v. with $\operatorname{cdf} F_{X}$, then $U=F_{X}(X) \sim$ Uniform $[0,1]$.

This leads to to the following method for simulating data.

Inverse Transform Method:

$$
V=F_{x}(X)
$$

$$
F_{x}^{-1}(V)=F_{x}^{-1}\left(F_{x}(x)\right)=X
$$

First, generate u from Uniform $[0,1]$. Then, $x=F_{X}^{-1}(u)$ is a realization from F_{X}.

Note:

$$
\begin{aligned}
& F^{-1} \text { may not be available in closed form. If that's the } \\
& \text { case, use some thing else. }
\end{aligned}
$$

1.1 Algorithm

1. Derive the inverse function F_{x}^{-1}. To do this, let $F(x)=u$. Then solve for x to find $x=F^{-1}(u)$.
2. Write a function to compute $x=F_{X}^{-1}(u)$.

$$
\rightarrow \text { in } R
$$

3. For each realization, \rightarrow simulated valve.
a. generate a random valve u from unif $(0,1)$.
b. Compute $x=F^{-1}(u)$.

$$
\text { Typically repeat } a-b \text { may tines. }
$$

Example 1.1 Simulate a random sample of size 1000 from the pdf $f_{X}(x)=3 x^{2}, 0 \leq x \leq 1$.

1. Find the cdf F.

$$
F(x)=\int_{0}^{x} 3 y^{2} d y=\left.y^{3}\right|_{0} ^{x}=x^{3} \quad x \in[0,1] .
$$

2. Find F^{-1}

$$
u=F(x)=x^{3} \Rightarrow u^{1 / 3}=x=F^{-1}(u) \quad 0 \leq u \leq 1
$$

$\hat{\imath}$ range of $F(x)$.
3. \# write code for inverse transform example
\# $f_{-} x(x)=3 x^{\wedge} 2,0<=x \quad \mid<=1$
(1) Write a function for F^{-1}
(2) Sample 1000 u valves from Un if $(0,1)$
(3) evaluate $x_{i}=F^{-1}\left(u_{i}\right)$ for $i=1, \ldots, 1000$.
1.2 Discrete RVs

If X is a discrete random variable and $\cdots<x_{i-1}<x_{i}<\cdots$ are the points of discontinuity of $F_{X}(x)$, then the inverse transform is $F_{X}^{-1}(u)=x_{i}$ where $F_{X}\left(x_{i-1}\right)<u \leq F_{X}\left(x_{i}\right)$. This leads to the following algorithm:

1. Generate a r.v. U from $\operatorname{Unif}(0,1)$. $\}$ repent mary thess.
2. Select x_{i} where $F_{X}\left(x_{i-1}\right)<U \leq F_{X}\left(x_{i}\right)$.

(1) If $u=0,5$ for rope.
E_{f}

Example 1.2 Generate 1000 samples from the following discrete distribution.

```
x <- 1:3
p <- c(0.1, 0.2, 0.7)
```

$\times 1.0$	2.03 .0		
f	0.1	0.2	0.7

\# write code to sample from discrete dsn
n <- 1000
There is a simpler way using sample () function
in k.

* Remember to allow replacement and speufy the probability vector if using sample $17 A$

Something we can do if we
\downarrow can't find F^{-1} in closed form
2 Acceptance-Reject Method
The goal is to generate realizations from a target density, f.
specifies the distribution we went to sample from.

Most cdfs cannot be inverted in closed form.
\Rightarrow we can't use inverse transform Method,
The Acceptance-Reject (or "Accept-Reject") samples from a distribution that is similar to f and then adjusts by only accepting a certain proportion of those samples.
\uparrow
target
\Rightarrow we reject the rust.
The method is outlined below:
(1)

Let g denote another density from which we know how to sample and we can easily calculate $g(x)$.

Let $e(\cdot)$ denote an envelope, having the property $e(x)=c g(x) \geq f(x)$ for all $x \in \mathcal{X}=\{x: f(x)>0\}$ for a given constant $c \geq 1$. Support of g must include the The Accept-Reject method then follows by sampling $Y \sim g$ and $U \sim \operatorname{Unif}(0,1)$.

If $U<f(Y) / e(Y)$, accept Y. Set $X=Y$ and consider X to be an element of the target random sample.

Note: $1 / c$ is the expected proportion of candidates that are accepted.
We can use this to evaluate pe efficiency of the algorthm.
2.1 Algorithm

1. Find a suitable density g and envelope e^{2} Living constant cf
2. Sample $Y \sim g$.
3. Sample $U \sim \operatorname{Unif}(0,1)$.
4. If $U<f(Y) / e(Y)$, accept Y.
5. Repeat from Step 2 until you have generated your desired sample size.

* Requirement: The support of g MUST include the support of $f_{a} \mathbb{A}$.
(BAD) Example: If $f \equiv N(0,2)$ and $g \equiv$ Unit $(-10,10)$.
This vould NOT be appropriate because the support of $f x_{f}=(-5, \infty)$

$$
x_{g}^{f}=[-10,10)
$$

2.2 Envelopes

Good envelopes have the following properties:
(1) Envelope exceeds target everywhere \leftarrow Support of g must include th
(2) Easy to sample from and easy to evaluate. support of f.
(3) Generate few rejected draws (save time).

A simple approach to finding the envelope: Say tres support of $x_{f}=[0,1]$.
Let $g(x)=U_{\text {if }}(0,1)=\left\{\begin{array}{lc}1 & \text { if } x \in[0,1] \\ 0 & 0 . w .\end{array}\right.$
Find $\max (f(x))$ and let $c=\max (f(x))$.

This is ONLY USEFUL if

This may not be efficient if you now more about the shape, use it!

Example 2.1 We want to generate a random variable with pdf $f(x)=60 x^{3}(1-x)^{2}$, $0 \leq x \leq 1$. This is a $\operatorname{Beta}(4,3)$ distribution.

Can we invert $F(x)$ analytically?
NO,
If not, find the maximum of $f(x)$.

$$
\begin{array}{rlrl}
f^{\prime}(x) & =60 \cdot 3 x^{2}(1-x)^{2}+60 x^{3} \cdot 2(1-x) \cdot-1 \\
& \left.=60 x^{2}(1-x)(3(1-x)-2 x)\right) & \\
& =60 x^{2}(1-x)(3-5 x)=0 & & \quad \text { could be } x=0, x=1) x=\frac{3}{5} \\
c=f\left(\frac{3}{5}\right)=2.0736 & & f(0)=f(1)=0 .
\end{array}
$$

\# pdf function, could use dbeta() instead $\mathrm{f}<-\mathrm{function}(\mathrm{x})$ \{ in base R.
\}
\# plot pdf
make x values to evaluate $f a^{t}$.

$$
60 * x^{\wedge} 3 *(1-x)^{\wedge} 2
$$

$$
\begin{aligned}
& \text { \# plot pdf } \\
& \mathrm{x}<-\operatorname{seq}(0,1, \text { length. out }=100)^{K}
\end{aligned}
$$

ggplot() +


```
envelope <- function(x) \{
    \#\# create the envelope function
\}
\# Accept reject algorithm
\(\mathrm{n}<-1000\) \# number of samples wanted
```

accepted <- 0 \# number of accepted samples
samples <- rep(NA, n) \# store the samples here empty vector of length n.
while(accepted < n) \{
\# sample y from $g \leftarrow$ unit $(0,1)$
keep going.
$y \ll$ runif (1).
\# sample u from uniform (0,1)
u <- runif(1)
if $(\mathrm{u}<\mathrm{f}(\mathrm{y})$ /envelop ely)) \{
\# accept $\mathrm{f}(\mathrm{y})$ /envelop ely)) \{ harmer accepted so my loop ends
accepted <- accepted + It eventually.
samples[accepted] <- y fore accepted sample.
\}

plat histogram of samples w/ trearetial pdf on to ρ.

 geom_histogram(aes(sample, $y=\ldots$ density..), bins $=50,)^{+}$density thstrant of

2.3 Why does this work?

Recall that we require

$$
\begin{aligned}
& e(y) \\
& c g(y) \geq f(y) \quad \forall y \in\{y: f(y)>0\} . \quad \text { and require } \\
& \text { support of } g \text { to }
\end{aligned}
$$

Thus,

$$
0 \leq \frac{f(y)}{c g(y)} \leq 1
$$

f.

The larger the ratio $\frac{f(y)}{c g(y)}$, the more the random variable Y looks like a random variable (y) distributed with pdf f and the more likely Y is to be accepted.

2.4 Additional Resources

See p.g. 69-70 of Rizzo for a proof of the validity of the method.
in

3 Transformation Methods

We have already used one transformation method - Inverse transform method - but there are many other transformations we can apply to random variables.

1. If $Z \sim N(0,1)$, then $V=Z^{2} \sim \chi_{\text {, }}^{2}$
2. If $U \sim \chi_{m}^{2}$ and $V \sim \chi_{n}^{2}$ are independent, then $F=\frac{U / m}{V / n} \sim F_{m, n}$
3. If $Z \sim N(0,1)$ and $V \sim \chi_{n}^{2}$ are independendent, then $T=\frac{Z}{\sqrt{V / n}} \sim t_{n}$
4. If $U \sim \operatorname{Gamma}(r, \lambda)$ and $V \sim \operatorname{Gamma}(s, \lambda)$ are independent, then $X=\frac{U}{U+V} \sim \operatorname{Beta}(r, s)$

$$
x \rightarrow g(x)
$$

Definition 3.1 A transformation is any function of one or more random variables.
Sometimes we want to transform random variables if observed data don't fit a model that might otherwise be appropriate. Sometimes we want to perform inference about a new $\xrightarrow{\text { statistic. }} *$

Example 3.1 If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p)$. What is the distribution of $\sum_{i=1}^{n} X_{i}$?

$$
\text { Can derive } \sum X_{i} \sim \text { Binomial }(n, \rho) \text {. }
$$

Example 3.2 If $X \sim N(0,1)$, what is the distribution of $X+5$?

$$
\text { Can derive } x+5 \sim N(5,1)
$$

Example 3.3 For X_{1}, \ldots, X_{n} id random variables, what is the distribution of the median of X_{1}, \ldots, X_{n} ? What is the distribution of the order statistics? $X_{[i]}$?
This is complex...

There are many approaches to deriving the pdf of a transformed variable.

- change of variable
- monaent generation function
If g monotone, then for cts X
$M_{x}(t)=E\left(e^{t x}\right)$
and $y=g(x)$,
$f_{y}(y)=\left\{\begin{array}{cc}f_{x}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|, y \in Y & - \\ 0 & \text { Convolution } \\ 0 . w & Z=x+y .\end{array}\right.$

Use computational methods to simulate from the transformed distribution.

3.1 Algorithm

Let X_{1}, \ldots, X_{p} be a set of independent random variables with pdfs $f_{X_{1}}, \ldots, f_{X_{p}}$, respectively, and let $g\left(X_{1}, \ldots, X_{p}\right)$ be some transformation we are interested in simulating from.

1. Simulate $X_{1} \sim f_{X_{1}}, \ldots, X_{p} \sim \left\lvert\, f_{X_{p}} / \begin{aligned} & \text { either be shright forward (named) } \\ & \text { could use inverse method, accept-ryject. }\end{aligned}\right.$
2. Compute $G=g\left(X_{1}, \ldots, X_{p}\right)$. This is one draw from $g\left(X_{1}, \ldots, X_{p}\right)$.
3. Repeat Steps 1-2 many times to simulate from the target distribution.
 in that we cannot use the rchisq function. How would you simulate Z ?
4. Sample ρ draws from the $N(0,1)$.
5. square all X^{\prime} ', sum then up. $\sum X_{i}^{2}$
6. Repeat 1-2.
library(tidyverse)
\# function for squared r.v.s
squares <- function(x) $x \wedge 2$$\quad$ change $\rho-\rho=\# r \cdot v^{\prime \cdot 3}$, of of X_{p}^{2}

samples \%>\%
mutate_all("squares") \%>\% \# square the rvs
rowSums() \# sum over rows

\# get samples
n <- 1000 \# number of samples
\# apply our function over different degrees of freedom
samples <- data.frame(chisq_2 = sample_z(n, 2),
chisq_5 = sample_z(n, 5),
chisq_10 = sample_z(n, 10),

4 Mixture Distributions A special trasofor nation.

The faithful dataset in R contains data on eruptions of Old Faithful (Geyser in Yellowstone National Park).

```
head(faithful)
```



```
faithful %>%
    gather(variable, value) %>%
    ggplot() +
    geom_histogram(aes(value), bins = 50) +
    facet_wrap(~variable, scales = "free")
```


What is the shape of these distributions?

$$
\begin{aligned}
& \text { Bimodal } \\
& \text { ie. two modes. }
\end{aligned}
$$

Definition 4.1 A random variable Y is a discrete mixture if the distribution of Y is a weighted sum $F_{Y}(y)=\sum \theta_{i} F_{X_{i}}(y)$ for some sequence of random variables X_{1}, X_{2}, \ldots and $\theta_{i}>0$ such that $\sum \theta_{i}=1 . \quad$ ।

$$
f(x)=\theta f_{x_{1}}(x)+(1-\theta) f_{x_{2}}(x) .
$$

How do we simulate from this distribution? Then ore two sources of variability,

$$
y \sim \text { bernoulli (} \theta \text {). The if } \begin{cases}y=1 & x \sim f_{x_{1}} \\ y=0 & x \sim f_{x_{2}} .\end{cases}
$$

Example 4.1

```
x <- seq(-5, 25, length.out = 100)
                                    |}\mathrm{ vector of 
mixture <- function(x, means, sd) {
    # x is the vector of points to evaluate the function at
    # means is a vector, sd is a single number
    f <- rep(0, length(x)) & storage container to store pof rlves.
    for(mean in means) {
            f <- f + dnorm(x, mean, sd)/length(means) # why do I divide?
    }
    f
}
I am eqvally weightivg each dsn.
\mathrm{ We don't hare to equally weight, we }
# look at mixtures of N(mu, 4) for different values of mu need }\sum0;=1)
data.frame(x,
    f1 = mixture(x, c(5, 10, 15), 2),
    f2 = mixture(x, c(5, 6, 7), 2),
    f3 = mixture(x, c(5, 10, 20), 2),
    f4 = mixture(x, c(1, 10, 20), 2)) %>%
    gather(mixture, value, -x) %>%
    ggplot() +
    geom_line(aes(x, value)) +
    facet_wrap(.~mixture, scales = "free_y")
```


4.1 Mixtures vs. Sums

Note that mixture distributions are not the same as the distribution of a sum of r.v.s.
mixtures are weighted sups of distributions.
NOT distributions of weighted Sums!

Example 4.2 Let $X_{1} \sim N(0,1)$ and $X_{2} \sim N(4,1)$, independent.

$$
\begin{aligned}
& S=\frac{1}{2}\left(X_{1}+X_{2}\right) \\
& E(S)=E\left(\frac{1}{2}\left(X_{1}+X_{2}\right)\right) \\
& \\
& =\frac{1}{2}\left(E x+E X_{2}\right)=\frac{1}{2}(0+4)=2 . \\
& \operatorname{Var}(S)=\operatorname{Var}\left(\frac{1}{2}\left(x_{1}+x_{2}\right)\right)=\frac{\text { indep }}{=}\left(\operatorname{Var} X_{1}+\operatorname{Var} X_{2}\right)=\frac{1}{4}(1+1)=\frac{1}{2}
\end{aligned}
$$

Can show infract that $S=\frac{1}{2}\left(x_{1}+x_{2}\right) \sim N\left(2, \frac{1}{2}\right)$
Z such that $f_{Z}(z)=0.5 f_{X_{1}}(z)+0.5 f_{X_{2}}(z)$.
n <- 1000
$\mathrm{u}<-\operatorname{rbinom}(\mathrm{n}, 1,0.5) \leftarrow$ choose which d sn w sample from $w / \theta=0,5$,

$$
\begin{array}{r}
\mathrm{z}<-\mathrm{u} * \underset{\mathrm{rnorm}(\mathrm{n})}{N(0,1)}+(1-\mathrm{u}) * \operatorname{rnorm}(\mathrm{n}, 4,1) \\
N(u, 1)
\end{array}
$$

ggplot() + geom_histogram(aes(z), bins = 50)

Z
$\theta=0.7 \quad 1-\theta=0,3$
"with probability"
What about $f_{Z}(z)=0.7 f_{X_{1}}(z)+0.3 f_{X_{2}}(z)$?
change $u \leftarrow \operatorname{rbinom}(n, 1,0.7)$ to choose $f_{x_{1}}$ w.p. 0.7 .

4.2 Models for Count Data (refresher)

Recall that the Poisson (λ) distribution is useful for modeling count data.

$$
f(x)=\frac{\lambda^{x} \exp \{-\lambda\}}{x!}, \quad x=0,1,2, \ldots
$$

λ low

Where $X=$ number of events occuring in a fixed period of time or space.
When the mean λ is low, then the data consists of mostly low values (i.e. $0,1,2$, etc.) and less frequently higher values.
As the mean count increases, the skewness goes away and the distribution becomes approximately normal.

With the Poisson distribution,

Example 4.3

$$
E[X]=\operatorname{Var} X=\lambda
$$

- \# of meows in a 2 mihute cat video on you tube.
- \# of baskets mode in a minute.
- \# of cars that drive by during class.

Example 4.4 The Colorado division of Parks and Wildlife has hired you to analyze their data on the number of fish caught in Horsetooth resevoir by visitors. Each visitor was asked - How long did you stay? - How many fish did you catch? - Other questions: How many people in your group, were children in your group, etc.

Some visiters do not fish, but there is not data on if a visitor fished or not. Some visitors who did fish did not catch any fish.

Note, this is modified from https://stats.idre.ucla.edu/r/dae/zip/.

```
fish <- read_csv("https://stats.idre.ucla.edu/stat/data/fish.csv")
```

```
18
```

8

```
8
# with zeroes
# with zeroes
ggplot(fish) + geom_histogram(aes(count), binwidth = 1)
```

ggplot(fish) + geom_histogram(aes(count), binwidth = 1)

```

```


without zeroes

fish %>%
filter(count > 0) %>%
ggplot() +
geom_histogram(aes(count), binwidth = 1)

```


A zero-inflated model assumes that the zero observations have two different origins \(\underset{\rightarrow}{\text { structural and sampling zeroes. }} \rightarrow\) a zero is possible and occur, by radom Example 4.5 impossible.
Outcome of a study = \# of cows w/ foot and mouth disease (FM.) per region in Turkey. \(\rightarrow\) structural Zeroes - here are no cows in a region.
\(\rightarrow\) samplingzerocs - cows in region, but no FMD.
Key point': you don't Know whether region has no cows or no diseuse.
A zero-inflated model is a mixture model because the distribution is a weighted average of the sampling model (ie. Poisson) and a point-mass at 0.

For \(Y \sim Z I P(\lambda)\),
\(\tau\) structural zeroes
\[
Y \sim \begin{cases}0 & \text { with probability } \pi \\ \operatorname{Poisson}(\lambda) & \text { with probability } 1-\pi\end{cases}
\]

So that,
\[
Y=\left\{\begin{array}{lll}
0 & \text { w.p. } & \pi+(1-\pi) \exp (-\lambda) \\
k & \text { w.p. } & (1-\pi) \frac{\lambda^{k} \exp (-\lambda)}{k!} \quad k=1,2, \ldots .
\end{array}\right.
\]

To simulate from this distribution,
\[
\begin{aligned}
& z \sim \text { Bernoulli }(\pi) \\
& \text { if } z=0, \quad y \sim \text { Poisson }(\lambda) \\
& \text { if } z=1, \quad y=0
\end{aligned}
\]
```

n <- 1000 < how many sumples
lambda <- 5 fix }
pi <- 0.3 }\Leftarrow fix
u <- rbinom(n, 1, pi)
zip <- u*0 + (1-u)*rpois(n, lambda)

```
# zero inflated model
# zero inflated model
ggplot() + geom_histogram(aes(zip), binwidth = 1)
ggplot() + geom_histogram(aes(zip), binwidth = 1)

# Poisson(5)
# Poisson(5)
ggplot() + geom_histogram(aes(rpois(n, lambda)), binwidth = 1)
ggplot() + geom_histogram(aes(rpois(n, lambda)), binwidth = 1)
```

