
Chapter 3: Methods for Simulating Data
Statisticians (and other users of data) need to simulate data for many reasons.

For example, I simulate as a way to check whether a model is appropriate. If the observed
data are similar to the data I generated, then this is one way to show my model may be a
good one.

It is also sometimes useful to simulate data from a distribution when I need to estimate an
expected value (approximate an integral).

R can already generate data from many (named) distributions:

##  [1] -1.0365488  0.6152833  1.4729326 -0.6826873 -0.6018386 -1.3526097 
##  [7]  0.8607387  0.7203705  0.1078532 -0.5745512

##  [1] -4.5092359  0.4464354 -7.9689786 -0.4342956 -5.8546081  2.7596877 
##  [7] -3.2762745 -2.1184014  2.8218477 -5.0927654

##  [1] 0.67720831 0.04377997 5.38745038 0.48773005 1.18690322 0.92734297 
##  [7] 0.33936255 0.99803323 0.27831305 0.94257810

But what about when we don’t have a function to do it?

set.seed(400) #reproducibility

rnorm(10) # 10 observations of a N(0,1) r.v.

rnorm(10, 0, 5) # 10 observations of a N(0,5^2) r.v.

rexp(10) # 10 observations from an Exp(1) r.v.
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we need to write our own functions to simulate

draws from distributions .
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1 Inverse Transform Method
Theorem 1.1 (Probability Integral Transform) If  is a continuous r.v. with cdf , then 

.

This leads to to the following method for simulating data.

Inverse Transform Method:

First, generate  from Uniform . Then,  is a realization from .

Note: 

1.1 Algorithm

1. Derive the inverse function . 

2. Write a function to compute . 

3. For each realization,

a. 

b. 
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.
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Example 1.1 Simulate a random sample of size  from the pdf .

1. 

2. 

3. 

1.2 Discrete RVs

If  is a discrete random variable and  are the points of discontinuity
of , then the inverse transform is  where . This
leads to the following algorithm:

1. Generate a r.v.  from Unif .

2. Select  where .

# write code for inverse transform example
# f_X(x) = 3x^2, 0 <= x \<= 1

Find the Cdf f.
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Example 1.2 Generate 1000 samples from the following discrete distribution.

x 1.0 2.0 3.0
f 0.1 0.2 0.7

x <- 1:3
p <- c(0.1, 0.2, 0.7)

# write code to sample from discrete dsn
n <- 1000

-

There is a simpler way using sample C) function
in R

.

* Remember to allow replacement and specify
the probability vector if using sample 4 A
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2 Acceptance-Reject Method
The goal is to generate realizations from a target density, .

Most cdfs cannot be inverted in closed form.

The Acceptance-Reject (or “Accept-Reject”) samples from a distribution that is similar to 
 and then adjusts by only accepting a certain proportion of those samples.

The method is outlined below:

Let  denote another density from which we know how to sample and we can easily calcu-
late .

Let  denote an envelope, having the property  for all 
 for a given constant .

The Accept-Reject method then follows by sampling  and .

If , accept . Set  and consider  to be an element of the target
random sample.

Note:  is the expected proportion of candidates that are accepted.

2.1 Algorithm

1. Find a suitable density  and envelope .

2. Sample .

3. Sample .

4. If , accept .

5. Repeat from Step 2 until you have generated your desired sample size.

ISonething
we can do if we

can 't find F
' in closed form

same g-
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y
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① ②
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-
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support of g
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-

we can use this to evaluate the efficiency of the algorithm.
what might be hard/slow?

← findingact slow : we may throw away
a lot of draws - depending

oh . on efficiency-

hard : finding e C )
.
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2.2 Envelopes

Good envelopes have the following properties:

A simple approach to �nding the envelope:

and '
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② Easy to sample from g and easy to evaluate . Support of t.

③ Generate few rejected draws ( save time) .
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Example 2.1 We want to generate a random variable with pdf , 
. This is a Beta  distribution.

Can we invert  analytically?

If not, �nd the maximum of .

# pdf function, could use dbeta() instead
f <- function(x) {
    60*x^3*(1-x)^2
}

# plot pdf
x <- seq(0, 1, length.out = 100)
ggplot() +
  geom_line(aes(x, f(x)))

- - could just use n beta in R
.

NO.
-

f.
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envelope <- function(x) {
  ## create the envelope function
}

# Accept reject algorithm
n <- 1000 # number of samples wanted
accepted <- 0 # number of accepted samples
samples <- rep(NA, n) # store the samples here

while(accepted < n) {
  # sample y from g
  
  # sample u from uniform(0,1)
  u <- runif(1)
  
  if(u < f(y)/envelope(y)) {
    # accept
    accepted <- accepted + 1
    samples[accepted] <- y
  }
}

ggplot() +
  geom_histogram(aes(sample, y = ..density..), bins = 50, ) +
  geom_line(aes(x, f(x)), colour = "red") +
  xlab("x") + ylab("f(x)")

←
Co uniflora) pdf

fig = c. I

= f ( 3157 .

empty erector of length n .

← while we don't have enough accepted samples,

Y ← runifCD.
← unit co . D .

keep going .

← calculating the proportion .

←increment accepted so my Coop
ends

eventually .
← store accepted scruple .

plot histogram of samples w/
turreted pdf on top .

or
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scale
as
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so
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.

density
instead of
raw counts

.

-
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2.3 Why does this work?

Recall that we require

Thus,

The larger the ratio , the more the random variable  looks like a random variable
distributed with pdf  and the more likely  is to be accepted.

2.4 Additional Resources

See p.g. 69-70 of Rizzo for a proof of the validity of the method.
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.
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3 Transformation Methods
We have already used one transformation method – Inverse transform method – but there
are many other transformations we can apply to random variables.

1. If , then 

2. If  and  are independent, then 

3. If  and  are independendent, then 

4. If  and  are independent, then 

De�nition 3.1 A transformation is any function of one or more random variables.

Sometimes we want to transform random variables if observed data don’t �t a model that
might otherwise be appropriate. Sometimes we want to perform inference about a new
statistic.

Example 3.1 If . What is the distribution of ?

Example 3.2 If , what is the distribution of ?

Example 3.3 For  iid random variables, what is the distribution of the median
of ? What is the distribution of the order statistics? ?

There are many approaches to deriving the pdf of a transformed variable.

x:

Fmn
tn

Beta Cr
, s)

x → gcx) .

-

- *
←
in deep .

I identically distributed, i.e.
"

random sample .

"
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But the theory isn’t always available. What can we do?

3.1 Algorithm

Let  be a set of independent random variables with pdfs , respec-

tively, and let  be some transformation we are interested in simulating from.

1. Simulate .

2. Compute . This is one draw from .

3. Repeat Steps 1-2 many times to simulate from the target distribution.

Example 3.4 It is possible to show for , . Imag-

ine that we cannot use the rchisq function. How would you simulate ?

library(tidyverse)

# function for squared r.v.s
squares <- function(x) x^2

sample_z <- function(n, p) {
  # store the samples
  samples <- data.frame(matrix(rnorm(n*p), nrow = n))

  samples %>% 
    mutate_all("squares") %>% # square the rvs
    rowSums() # sum over rows
}

# get samples
n <- 1000 # number of samples

# apply our function over different degrees of freedom
samples <- data.frame(chisq_2 = sample_z(n, 2),
                      chisq_5 = sample_z(n, 5),
                      chisq_10 = sample_z(n, 10),

Statistical

Use computationalmethods
to simulate from the transformed

distribution
.

① I either be straight
forward (named)

could use inverse method , accept-reject.

parameter
of X
'd"

a domgauge
"
ot

-
controls

shape
of dsn

.

I
. Sample p draws from the NCO, D .

2 , square all X
's
,
sum them up. EXE

3 . Repeat l - 2
.

c-
we

can
change p

- p
= # r .v.

'
s
,

df of X-p .

←
this is n samples

of

p
iid Nco , D

n. v.
s
.

9 their will add up the p squad X 's
,
n times .
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                      chisq_100 = sample_z(n, 100))

# plot results
samples %>%
  gather(distribution, sample, everything()) %>% # make easier to 
plot w/ facets

  separate(distribution, into = c("dsn_name", "df")) %>% # get the df
  mutate(df = as.numeric(df)) %>% # make numeric
  mutate(pdf = dchisq(sample, df)) %>% # add density function values 
  ggplot() + # plot
  geom_histogram(aes(sample, y = ..density..)) + # samples
  geom_line(aes(sample, pdf), colour = "red") + # true pdf
  facet_wrap(~df, scales = "free")

←
wide

data
→
tall data

✓
degrees
of freedom

f- adds

← remember to plot on te some seal . the density

in red
,

valves

¥tscales for each df Scales =

"

free
- y

" scale, =
"

free -x
"

xitxi Ht . - txs

Xf t . -Xiao Xie - TXToo
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4 Mixture Distributions

The faithful dataset in R contains data on eruptions of Old Faithful (Geyser in Yellow-

stone National Park).

##   eruptions waiting 
## 1     3.600      79 
## 2     1.800      54 
## 3     3.333      74 
## 4     2.283      62 
## 5     4.533      85 
## 6     2.883      55

What is the shape of these distributions?

head(faithful)

faithful %>%
  gather(variable, value) %>%
  ggplot() +
  geom_histogram(aes(value), bins = 50) +
  facet_wrap(~variable, scales = "free")

A special transformation .

length:#us , waiting Yuet erupt
"

bimodal .

Anna
Bimodal
i. e .

two modes .
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De�nition 4.1 A random variable  is a discrete mixture if the distribution of  is a
weighted sum  for some sequence of random variables  and 

 such that .

For  r.v.s,

does
not mean discrete dsn .

e-
-

un

/
t
summing

weights "If"Ii¥-nations.

Stx) = of
*
tht ft -otfxzcxl .

two different
distributions .

How do we simulate from this distribution?

✓
with pro

la hit z
Q

.

There are two sources of variability .

You Bernoulli ( o) .

Then if { 3--1
Xnfx

,

y
-

-o Xnfxz
.
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Example 4.1

4.1 Mixtures vs. Sums

Note that mixture distributions are not the same as the distribution of a sum of r.v.s.

x <- seq(-5, 25, length.out = 100)

mixture <- function(x, means, sd) {
  # x is the vector of points to evaluate the function at
  # means is a vector, sd is a single number
  f <- rep(0, length(x))
  for(mean in means) { 
    f <- f + dnorm(x, mean, sd)/length(means) # why do I divide?
  }
  f
}

# look at mixtures of N(mu, 4) for different values of mu
data.frame(x, 
           f1 = mixture(x, c(5, 10, 15), 2), 
           f2 = mixture(x, c(5, 6, 7), 2),
           f3 = mixture(x, c(5, 10, 20), 2),
           f4 = mixture(x, c(1, 10, 20), 2)) %>%
  gather(mixture, value, -x) %>%
  ggplot() +
  geom_line(aes(x, value)) +
  facet_wrap(.~mixture, scales = "free_y")

directer of means

← storage container H store pdf vibes .

" I am equally mightily each dsn
.

We don't have to equally night, we just
need Efi -4 )

.

Ah
.

*

Anna

mixtures are weighted sups of distributions .

NOT distributions of weighted Suns !
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Example 4.2 Let  and , independent.

 such that .

What about ?

n <- 1000
u <- rbinom(n, 1, 0.5)

z <- u*rnorm(n) + (1 - u)*rnorm(n, 4, 1)

ggplot() +
  geom_histogram(aes(z), bins = 50)

T

da" Yohan .

Els) -- Eftzlxitxal )
= If Ext D= I ( Oth) = 2 .

Var ( s) -- var ( thx .tw)
"

utfvarxitvarxzl -- FLI ti) = I

can show in fact that 5- Ifxitxa) n N(2 ,
÷)

Q
° to

← choose which dsn we sample from w/ 0=015 ,

mom Nail )

s

i
-f x

( l

l
l /

/ I

AA
'
-
-

quit 1-0--0.3 " with probability
"

change UE-rbin.com ( n , I, o . t ) to choose f×
,
hip .

0.7
.
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4.2 Models for Count Data (refresher)

Recall that the Poisson  distribution is useful for modeling count data.

Where  number of events occuring in a �xed period of time or space.

When the mean  is low, then the data consists of mostly low values (i.e. , etc.) and
less frequently higher values.

As the mean count increases, the skewness goes away and the distribution becomes ap-
proximately normal.

With the Poisson distribution,

Example 4.3

Example 4.4 The Colorado division of Parks and Wildlife has hired you to analyze their
data on the number of �sh caught in Horsetooth resevoir by visitors. Each visitor was
asked - How long did you stay? - How many �sh did you catch? - Other questions: How
many people in your group, were children in your group, etc.

Some visiters do not �sh, but there is not data on if a visitor �shed or not. Some visitors
who did �sh did not catch any �sh.

Note, this is modi�ed from https://stats.idre.ucla.edu/r/dae/zip/.

fish <- read_csv("https://stats.idre.ucla.edu/stat/data/fish.csv")

i
.

I v

.

.
.

-
-

A low

in

high X .

shape of teds. !
.

- # of meows in a 2 minute cat video on youtube.

- ft of baskets made in a minute.

- # of cars that drive by during class .
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# with zeroes
ggplot(fish) + geom_histogram(aes(count), binwidth = 1)

# without zeroes
fish %>%
  filter(count > 0) %>%
  ggplot() + 
  geom_histogram(aes(count), binwidth = 1)

y
# of far!ght by

•phony .

" ""
"
"

"

4
this may

look more

like a poisson
(with

some
outliers) .
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A zero-in�ated model assumes that the zero observations have two different origins –
structural and sampling zeroes.

Example 4.5

A zero-in�ated model is a mixture model because the distribution is a weighted average of
the sampling model (i.e. Poisson) and a point-mass at .

For ,

So that,

To simulate from this distribution,

n <- 1000
lambda <- 5
pi <- 0.3

u <- rbinom(n, 1, pi)
zip <- u*0 + (1-u)*rpois(n, lambda)

- - -7 a Zero is possible and occurs by random
Lz Anon- zero valve is chance

.

impossible .
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# zero inflated model
ggplot() + geom_histogram(aes(zip), binwidth = 1)

# Poisson(5)
ggplot() + geom_histogram(aes(rpois(n, lambda)), binwidth = 1)


