Chapter 3: Methods for Simulating Data

Statisticians (and other users of data) need to simulate data for many reasons.

For example, I simulate as a way to check whether a model is appropriate. If the observed data are similar to the data I generated, then this is one way to show my model may be a good one.

R can already generate data from many (named) distributions:

```
set.seed(400) #reproducibility
rnorm(10) # 10 observations of a N(0,1) r.v.

## [1] -1.0365488   0.6152833   1.4729326  -0.6826873  -0.6018386  -1.3526097
## [7]   0.8607387   0.7203705   0.1078532  -0.5745512

rnorm(10, 0, 5) # 10 observations of a N(0,5^2) r.v.

## [1] -4.5092359   0.4464354  -7.9689786  -0.4342956  -5.8546081   2.7596877
## [7] -3.2762745  -2.1184014   2.8218477  -5.0927654

rexp(10) # 10 observations from an Exp(1) r.v.

## [1] 0.67720831   0.04377997  5.38745038   0.48773005   1.18690322   0.92734297
## [7] 0.33936255   0.99803323   0.27831305   0.94257810
```

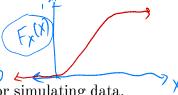
But what about when we don't have a function to do it?

Li we need to unite our own functions to simulate draws from distributions.

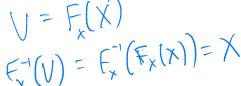
1 Inverse Transform Method

Theorem 1.1 (Probability Integral Transform) If X is a continuous r.v. with cdf F_X , then

$$U = F_X(X) \sim \mathrm{Uniform}[0,1].$$



This leads to to the following method for simulating data.



First, generate u from Uniform[0, 1]. Then, $x = F_X^{-1}(u)$ is a realization from F_X .

1.1 Algorithm

- 1. Derive the inverse function F_X^{-1} . To do this, let F(x) = u. Then solve for x to find x = F'(u).
- 2. Write a function to compute $x = F_X^{-1}(u)$.

- 3. For each realization, ___ Simulated valve.
 - a. gererate a random valve u from unif (0,1).
 - b. Compute x = F(u).

3 1.2 Discrete RVs

Example 1.1 Simulate a random sample of size 1000 from the pdf $f_X(x) = 3x^2, 0 \le x \le 1$.

1. Find the cdf
$$f$$
.
 $f(x) = \int_{0}^{x} 3y^{2} dy = y^{3} \Big|_{0}^{x} = x^{3} \quad \text{if } x \in [0, 1].$

2. Find
$$F''$$

$$u = F(x) = \pi^3 \implies u''^3 = x = F'(u)$$

$$0 \le u \le 1$$

$$1 \text{ range of } F(x)$$

- 3. # write code for inverse transform example $\# f X(x) = 3x^2, 0 <= x <= 1$
 - 1) Write a function for Fi
- 2) Sample 1000 uvalves from Unif (0,1)
 3) evaluate xi = F'(ui) for i=1,..., 1000.

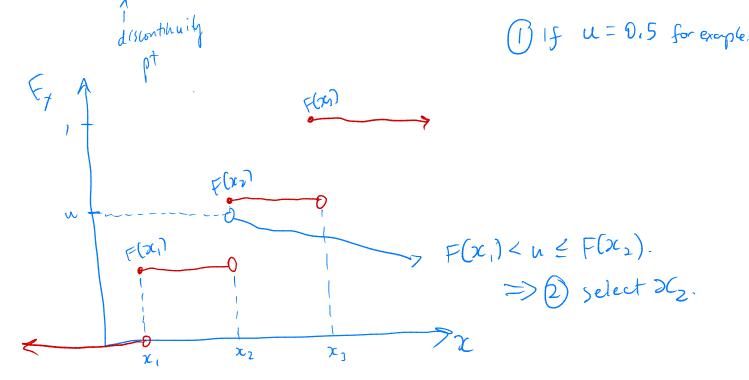
1.2 Discrete RVs

If X is a discrete random variable and $\cdots < x_{i-1} < x_i < \cdots$ are the points of discontinuity of $F_X(x)$, then the inverse transform is $F_X^{-1}(u) = x_i$ where $F_X(x_{i-1}) < u < F_X(x_i)$ leads to the following algorithm:

1. Generate a r.v. U from Unif(0,1).

{ repeat many thres.

2. Select x_i where $F_X(x_{i-1}) < U \le F_X(x_i)$.



Example 1.2 Generate 1000 samples from the following discrete distribution.

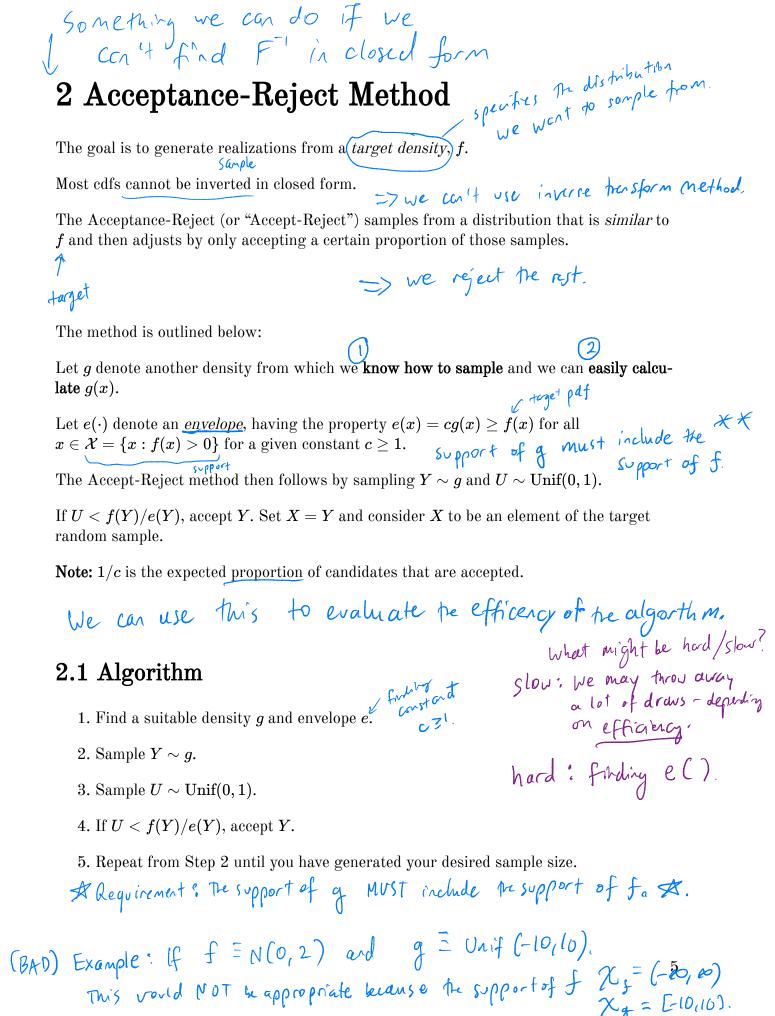
x <- 1:3p <- c(0.1, 0.2, 0.7)

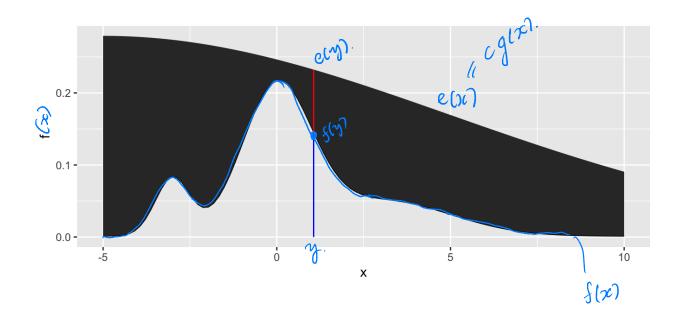
> x 1.0 2.0 3.0 f 0.1 0.2 0.7

 $\mbox{\it\#}$ write code to sample from discrete dsn n <- 1000

There is a simpler way using sample () function in R.

* Remember to allow replacement and specify
the probability vector if using sample 17 A





2.2 Envelopes

Good envelopes have the following properties:

D Envelope exceeds target everywhere & support of g must include to 2) Easy to sample from g and easy to evaluate. Support of J.

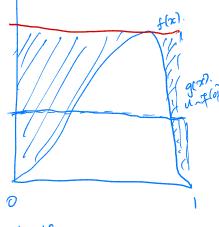
3 Generate few rejected draws (save time).

A simple approach to finding the envelope: Say the support of $\chi_f = [o_{\ell}]$

Let $g(x) = V_{nif}(o_{il}) = \begin{cases} 1 & \text{if } x \in G_{0i} \text{ } \end{cases}$

Find max(f(x)) and let $c = \max(f(x))$.

This is ONLY USEFUL if support is [01].



This may not be efficient if you know more about the shape, use it!

2.2 Envelopes 7

Example 2.1 We want to generate a random variable with pdf $f(x) = 60x^3(1-x)^2$, $0 \le x \le 1$. This is a Beta(4, 3) distribution. > could just use abeta () in R.

Can we invert F(x) analytically?

If not, find the maximum of f(x).

$$f'(x) = 60 \cdot 3x^{2}(1-x)^{2} + 60x^{3} \cdot 2(1-x) \cdot -1$$

$$= 60 x^{2} (1-x) (3(1-x) -2x)$$

$$= 60 x^{2} (1-x) (3-5x) = 0.$$

$$\int_{x=0}^{(a)} x^{2}(1-x) (3-5x) = 0.$$

$$\int_{x=0}^{(a)} x^{2}(1-x) (3-5x) = 0.$$

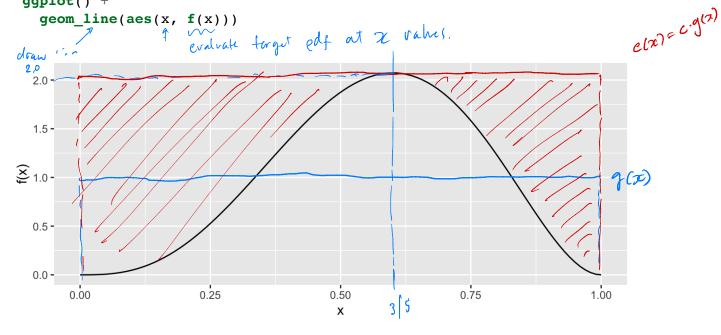
$$C=f(\frac{3}{5})=2.0736$$

```
# pdf function, could use dbeta() instead
# plot pdf

x <- seq(0, 1, length.out = 100)

ggplot() +

geom_line(aes(x *)
```



```
## create the envelope function ( C. vifloi) pdf
              envelope <- function(x) {
                                                                  = c.1
                                                                  = f(3/5).
              # Accept reject algorithm
              n <- 1000 # number of samples wanted
               accepted <- 0 # number of accepted samples
              samples <- rep(NA, n) # store the samples here empty vector of length 1.

while redon't have enough accepted samples,

while (accepted < n) {
              while(accepted < n) {</pre>
                                                               keep going.
             V # sample y from g \leftarrow wif(0, 0)
               y ~ Funif CI).
               # sample u from uniform(0,1)
                 if (u < f(y)/envelope(y)) {

# accept
                 u <- runif(1)
                   }
             plot histogram of scaples of theoretical pdf on top.

gaplot() +

geom_histogram(aes(sample, y = ..density...), bins = 50, ) +

yeom_line(aes(x, f(x)), colour = "red") +

xlab("x") + ylab("f(x)")
theoretical ______

pdf

pdf

y's y labels
                                                                         important for your hw!
                 xlab("x") + ylab("f(x)")
                2.0 -
                1.5 -
                0.5 -
                0.0 -
                                        0.25
                      0.00
                                                                             0.75
                                                                                                1.00
                                                           0.50
```

Х

2.3 Why does this work?

Recall that we require

Thus,

all that we require
$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

$$cg(y) \geq f(y) \qquad \forall y \in \{y: f(y) > 0\}.$$

The larger the ratio $\frac{f(y)}{cg(y)}$, the more the random variable Y looks like a random variable Ydistributed with pdf f and the more likely Y is to be accepted.

2.4 Additional Resources

See p.g. 69-70 of Rizzo for a proof of the validity of the method.

3 Transformation Methods

We have already used one transformation method – **Inverse transform method** – but there are many other transformations we can apply to random variables.

1. If
$$Z \sim N(0,1)$$
, then $V = Z^2 \sim$

2. If
$$U \sim \chi_m^2$$
 and $V \sim \chi_n^2$ are independent, then $F = \frac{U/m}{V/n} \sim$

3. If
$$Z \sim N(0,1)$$
 and $V \sim \chi_n^2$ are independent, then $T = \frac{Z}{\sqrt{V/n}} \sim$

4. If
$$U \sim \operatorname{Gamma}(r,\lambda)$$
 and $V \sim \operatorname{Gamma}(s,\lambda)$ are independent, then $X = \frac{U}{U+V} \sim$

Definition 3.1 A *transformation* is any function of one or more random variables.

Sometimes we want to transform random variables if observed data don't fit a model that might otherwise be appropriate. Sometimes we want to perform inference about a new statistic.

Example 3.1 If $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Bernoulli}(p)$. What is the distribution of $\sum_{i=1}^n X_i$?

Example 3.2 If $X \sim N(0,1)$, what is the distribution of X + 5?

Example 3.3 For X_1, \ldots, X_n iid random variables, what is the distribution of the median of X_1, \ldots, X_n ? What is the distribution of the order statistics? $X_{[i]}$?

There are many approaches to deriving the pdf of a transformed variable.

3.1 Algorithm

But the theory isn't always available. What can we do?

3.1 Algorithm

Let X_1, \ldots, X_p be a set of independent random variables with pdfs f_{X_1}, \ldots, f_{X_p} , respectively, and let $g(X_1, \ldots, X_p)$ be some transformation we are interested in simulating from.

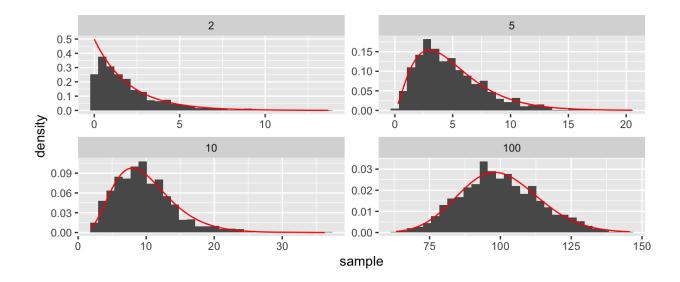
- 1. Simulate $X_1 \sim f_{X_1}, \ldots, X_p \sim f_{X_p}$.
- 2. Compute $G = g(X_1, \ldots, X_p)$. This is one draw from $g(X_1, \ldots, X_p)$.
- 3. Repeat Steps 1-2 many times to simulate from the target distribution.

Example 3.4 It is possible to show for $X_1, \ldots, X_p \stackrel{iid}{\sim} N(0,1), Z = \sum_{i=1}^p X_i^2 \sim \chi_p^2$. Imagine that we cannot use the rchisq function. How would you simulate Z?

```
library(tidyverse)
# function for squared r.v.s
squares <- function(x) x^2</pre>
sample z <- function(n, p) {</pre>
  # store the samples
  samples <- data.frame(matrix(rnorm(n*p), nrow = n))</pre>
  samples %>%
    mutate_all("squares") %>% # square the rvs
    rowSums() # sum over rows
}
# get samples
n <- 1000 # number of samples
# apply our function over different degrees of freedom
samples <- data.frame(chisq 2 = sample z(n, 2),</pre>
                       chisq 5 = sample z(n, 5),
                       chisq 10 = sample_z(n, 10),
```

```
chisq 100 = sample_z(n, 100))
```

```
# plot results
samples %>%
  gather(distribution, sample, everything()) %>% # make easier to
  plot w/ facets
  separate(distribution, into = c("dsn_name", "df")) %>% # get the df
  mutate(df = as.numeric(df)) %>% # make numeric
  mutate(pdf = dchisq(sample, df)) %>% # add density function values
  ggplot() + # plot
  geom_histogram(aes(sample, y = ..density..)) + # samples
  geom_line(aes(sample, pdf), colour = "red") + # true pdf
  facet_wrap(~df, scales = "free")
```

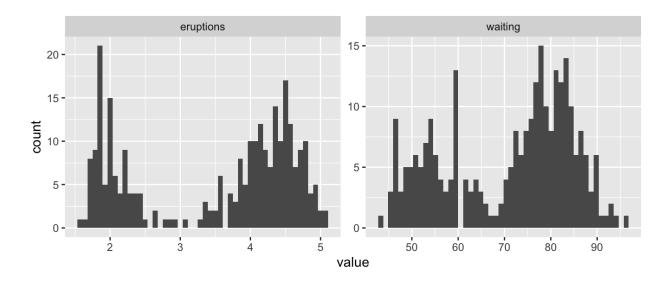


The faithful dataset in R contains data on eruptions of Old Faithful (Geyser in Yellowstone National Park).

```
head(faithful)
```

```
##
     eruptions waiting
## 1
          3.600
                       79
          1.800
## 2
                       54
## 3
          3.333
                       74
## 4
          2.283
                       62
## 5
          4.533
                       85
## 6
          2.883
                       55
```

```
faithful %>%
  gather(variable, value) %>%
  ggplot() +
  geom_histogram(aes(value), bins = 50) +
  facet_wrap(~variable, scales = "free")
```



What is the shape of these distributions?

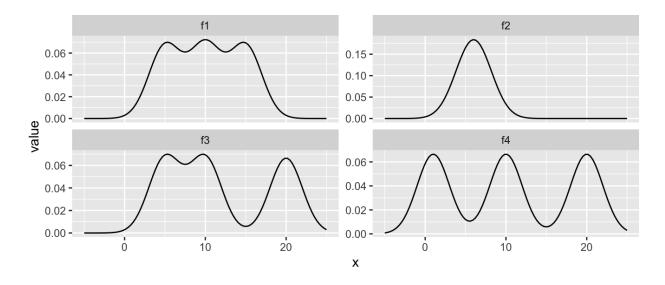
Definition 4.1 A random variable Y is a discrete mixture if the distribution of Y is a weighted sum $F_Y(y) = \sum \theta_i F_{X_i}(y)$ for some sequence of random variables X_1, X_2, \ldots and $\theta_i > 0$ such that $\sum \theta_i = 1$.

For 2 r.v.s,

4.1 Mixtures vs. Sums

Example 4.1

```
x < - seq(-5, 25, length.out = 100)
mixture <- function(x, means, sd) {</pre>
  \# x is the vector of points to evaluate the function at
  # means is a vector, sd is a single number
  f <- rep(0, length(x))</pre>
  for(mean in means) {
    f <- f + dnorm(x, mean, sd)/length(means) # why do I divide?
  }
  f
}
# look at mixtures of N(mu, 4) for different values of mu
data.frame(x,
           f1 = mixture(x, c(5, 10, 15), 2),
           f2 = mixture(x, c(5, 6, 7), 2),
           f3 = mixture(x, c(5, 10, 20), 2),
           f4 = mixture(x, c(1, 10, 20), 2)) %>%
  gather(mixture, value, -x) %>%
  ggplot() +
  geom line(aes(x, value)) +
  facet wrap(.~mixture, scales = "free y")
```



4.1 Mixtures vs. Sums

Note that mixture distributions are *not* the same as the distribution of a sum of r.v.s.

Example 4.2 Let $X_1 \sim N(0,1)$ and $X_2 \sim N(4,1)$, independent.

$$S=rac{1}{2}(X_1+X_2)$$

Z such that $f_Z(z) = 0.5 f_{X_1}(z) + 0.5 f_{X_2}(z)$.

```
n <- 1000
u <- rbinom(n, 1, 0.5)

z <- u*rnorm(n) + (1 - u)*rnorm(n, 4, 1)

ggplot() +
   geom_histogram(aes(z), bins = 50)</pre>
```



What about $f_Z(z) = 0.7 f_{X_1}(z) + 0.3 f_{X_2}(z)$?

4.2 Count Data

4.2 Models for Count Data (refresher)

Recall that the Poisson(λ) distribution is useful for modeling count data.

$$f(x) = rac{\lambda^x \exp\{-\lambda\}}{x!}, \quad x = 0, 1, 2, \ldots$$

Where X = number of events occurring in a fixed period of time or space.

When the mean λ is low, then the data consists of mostly low values (i.e. 0, 1, 2, etc.) and less frequently higher values.

As the mean count increases, the skewness goes away and the distribution becomes approximately normal.

With the Poisson distribution,

$$E[X] = VarX = \lambda.$$

Example 4.3

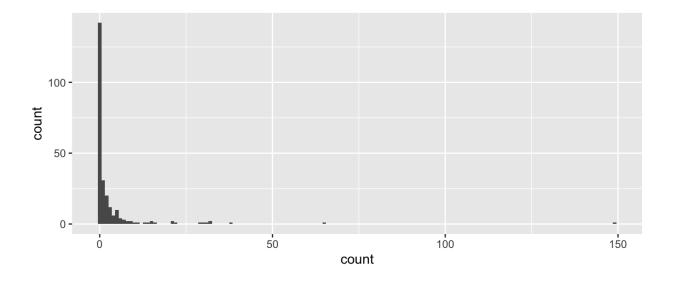
Example 4.4 The Colorado division of Parks and Wildlife has hired you to analyze their data on the number of fish caught in Horsetooth resevoir by visitors. Each visitor was asked - How long did you stay? - How many fish did you catch? - Other questions: How many people in your group, were children in your group, etc.

Some visiters do not fish, but there is not data on if a visitor fished or not. Some visitors who did fish did not catch any fish.

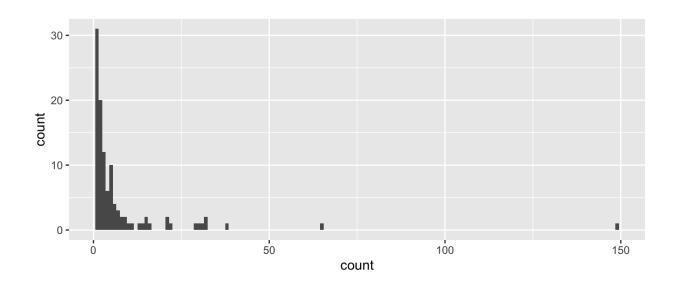
Note, this is modified from https://stats.idre.ucla.edu/r/dae/zip/.

fish <- read_csv("https://stats.idre.ucla.edu/stat/data/fish.csv")</pre>

```
# with zeroes
ggplot(fish) + geom_histogram(aes(count), binwidth = 1)
```



```
# without zeroes
fish %>%
  filter(count > 0) %>%
  ggplot() +
  geom_histogram(aes(count), binwidth = 1)
```



4.2 Count Data

A *zero-inflated* model assumes that the zero observations have two different origins – structural and sampling zeroes.

Example 4.5

A zero-inflated model is a **mixture model** because the distribution is a weighted average of the sampling model (i.e. Poisson) and a point-mass at 0.

For $Y \sim ZIP(\lambda)$,

$$Y \sim egin{cases} 0 & ext{with probability } \pi \ \operatorname{Poisson}(\lambda) & ext{with probability } 1-\pi \end{cases}$$

So that,

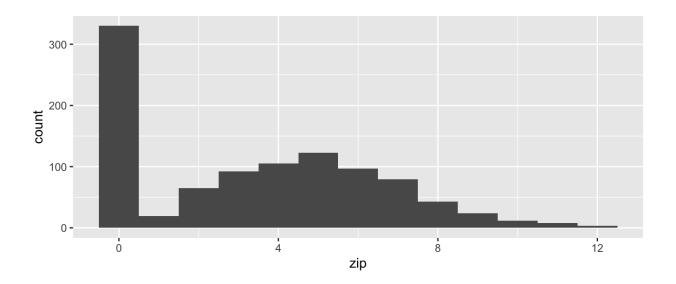
$$Y =$$

To simulate from this distribution,

```
n <- 1000
lambda <- 5
pi <- 0.3

u <- rbinom(n, 1, pi)
zip <- u*0 + (1-u)*rpois(n, lambda)</pre>
```

```
# zero inflated model
ggplot() + geom_histogram(aes(zip), binwidth = 1)
```



Poisson(5)
ggplot() + geom_histogram(aes(rpois(n, lambda)), binwidth = 1)

