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� Limit Theorems

Motivation

For some new statistics° we may want to derive features of the distribution of the statisticµ

When we canÏt do this analytically° we need to use statistical computing methods to apÅ

proximate themµ

We will return to some basic theory to motivate and evaluate the computational methods

to followµ

�µ� Laws of Large Numbers

Limit theorems describe the behavior of sequences of random variables as the sample size

increases Á Âµ

Often we describe these limits in terms of how close the sequence is to the truthµ

We can evaluate this distance in several waysµ

Some modes of convergence Ä

Laws of large numbers Ä
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7µ2 Central Limit Theorem 15

7µ2 Central Limit Theorem

Theorem 7µ1 ÁCentral Limit Theorem ÁCLTÂÂ Let  be a random sample from a
distribution with mean  and �nite variance ° then the limiting distribution of 

 is µ

Interpretation¯

Note that the CLT doesnÏt require the population distribution to be Normalµ
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� Estimates and Estimators

Let  be a random sample from a populationµ

Let  be a function of the sampleµ

Statistics estimate parametersµ

Example �µ�

De{nition �µ� An estimator is a rule for calculating an estimate of a given quantityµ

De{nition �µ� An estimate is the result of applying an estimator to observed data samples

in order to estimate a given quantityµ

We need to be careful not to confuse the above ideas¯

We can make any number of estimators to estimate a given quantityµ How do we know the

ÌbestÍ one¶

Then Tn is a
' 'statistic "

"

and the pdf of Tn is called th
"sampling distribution of

n
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A statistic is a point estimator . (
tf based on observed

a CI is an internal estimator.
data
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function of random variables

.

→ estimator ( statistic)

function of observed data ( an actual ft)→
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fixed but unknown quantity→ parameter .
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estimator is "better
" than wrote me ?



1�

� Evaluating Estimators
There are many ways we can describe how good or bad ÁevaluateÂ an estimator isµ

�µ1 Bias

De�nition �µ1 Let  be a random sample from a population°  a parameter of inÅ
terest° and  an estimatorµ Then the bias of  is de�ned as

De�nition �µ2 An unbiased estimator is de�ned to be an estimator 
where

Example �µ1

Example �µ2

Example �µ�
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�� � Evaluating Estimators

�µ� Mean Squared Error ÁMSEÂ

De�nition �µ� The mean squared error ÁMSEÂ of an estimator  for parameter  is deÅ
�ned as

Generally° we want estimators with

Sometimes an unbiased estimator  can have a larger variance than a biased estimator 
µ

Example �µ� LetÏs compare two estimators of µ

I can show

① Small bias a often there is a

② small variance
c) bias - variance trade - off

( car 't get both ) .

Els ' ) -- o
' ELE 't = and 6

'

but Var Cs ' ) > Var ( En) !

Can show

MSE ( S2) = Efsa- 642
= IT 64

MSE ( 82 ) = ELIZ -672=2%-64

⇒ MSE (5) > MSECED .

See pg .
331 of Casella { Berger .



�µ� Snandakd Ekk`k ��

�µ� Snandakd Ekk`k

De{nini`n �µ� The lnandakd ekk`k `f an elniman`k  `f  il de{ned al

We leek elniman`kl uinh lmall µ

Evamhle �µ�

← standard error =
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of En
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�� C`mhaking Elniman`kl
We nwhicallw c`mhake lnanilnical elniman`kl baled `n nhe f`ll`uing balic hk`hekniel¯

�µ 

�µ 

�µ 

�µ 

Consistency : as n 9 does he estimator converge to the parameter its

estimating ? ( common in probability )
Bias : Isth estimator unbiased ? E (En ) '- O

.

Efficiency : In is more efficient En if Valen ) L Va (En ) .

MSE : compare MSE ( En ) to MSE ( En
) (wat the smallest one )
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Example 10µ1 Let us consider the ef�ciency of estimates of the center of a distributionµ A
measure of central tendency estimates the central or typical value for a probability
distributionµ

Mean and median are two measures of central tendencyµ They are both unbiased, which is
more ef�cient¶

VeW.Veed(400)

WimeV <- 10000 # nXmber of Wimes Wo make a sample
n <- 100 # si]e of Whe sample
XnifRUm_UeVXlWV <- daWa.frame(mean = nXmeric(WimeV), median = 
nXmeric(WimeV))

nRUmal_UeVXlWV <- daWa.frame(mean = nXmeric(WimeV), median = 
nXmeric(WimeV))

for(i in 1:WimeV) ^
  [ <- rXnif(n)
  \ <- rnorm(n)
  XnifRUm_UeVXlWV[i, "mean"] <- mean([)
  XnifRUm_UeVXlWV[i, "median"] <- median([)
  nRUmal_UeVXlWV[i, "mean"] <- mean(\)
  nRUmal_UeVXlWV[i, "median"] <- median(\)
`

XnifRUm_UeVXlWV %>%
  gaWher(VWaWiVWic, YalXe, eYer\Whing()) %>%
  ggploW() +
  geom_denViW\(aeV(YalXe, lW\ = VWaWiVWic)) +
  ggWiWle("Unif(0, 1)") +
  Wheme(legend.SRViWiRn = "bRWWRm")

nRUmal_UeVXlWV %>%
  gaWher(VWaWiVWic, YalXe, eYer\Whing()) %>%
  ggploW() +
  geom_denViW\(aeV(YalXe, lW\ = VWaWiVWic)) +
  ggWiWle("NRUmal(0, 1)") +
  Wheme(legend.SRViWiRn = "bRWWRm")

→ which has smaller variance ? Unif (o, 1)

Normal Coil .
I\geed scruplesstiff, { -

non sapling
peso den of

near Thedian .

} 99mi. .



22 10 Comparing Estimators

Next Up In Chµ 5, weÏll look at a method that produces unbiased estimators of ²

Sampling dsns
.
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