Chapter 2: Probability for Statistical
Computing
We will briefly review some definitions and concepts in probability and statistics that will

be helpful for the remainder of the class.

Just like we reviewed computational tools (R and packages), we will now do the same for
probability and statistics.

Note: This is not meant to be comprehensive. I am assuming you already know this and
maybe have forgotten a few things.
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Alternative text: “Hell, my eighth grade science class managed to conclusively reject it
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1 Random Variables and Probability

Definition 1.1 A random variable is a function that maps sets of all possible outcomes of
an experiment (sample space €2) td
_an experiment
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1.1 CDF's and PDF's 3

1.1 Distribution and Density Functions

Definition 1.2 The probability mass function (pmf) of a random variable X is fx defined )
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There are a few requirements of a valid pmf
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Example 1.4 Let 2 = all possible values of a roll of a single die = {1,...,6} and X be the
outcome of a single roll of one die € {1,...,6}.
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do not have positive probability glass at any single point.
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Definition 1.3 The probability density function (pdf) of a random variable X is fy defined

by AC R
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4 1 RVs and Probability
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A random variable X is continuous if Fx is a continuous function and discrete if FX is a
step function. ¢
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1.2 Two continuous RVs 5}

Recall an indicator function is defined as
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6 1 RVs and Probability

Example 1.9

The marginal densities of X and Y are given by

fX (z) = /fXY z,y)d and  fy(y) = /fXY z,y)dz;
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Example 1.10 (From Devore (2008) Example 5.3, pg. 187) A bank operates both a drive-
up facility and a walk-up window. On a randomly selected day, let X be the proportion of
time that the drive—gg facility is in use and Y is the proportion of time that the walk-up
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1.2 Two continuous RVs 7
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2 Expected Value and Variance

Definition 2.1 The expected value (average or mean) of a random variable X with pdf or
pmf fx is defined as
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Where X = {z : fx(z) > 0} is the support of X.

This is a w of all possible values X by the probability distribution. o . (VDS ‘s
- v ,,V\Sr (S (= X
Example 2.1 Let X ~ Bernoulli(p). Find E[X]. A0 derv ) l’x’ et
_ | e P _ )O Whe, =) x) = x o ) e 1
A % ) 0.u. = g(\?{) Z I/P vhea 220 9{: ? C P & %D/ 3

Pcfum¢+cr (s Q

EX= 2% = o(ip) T (D =p

Xeiond
A
Example 2.2 Let X ~ Exp(A). Find E[X].
$(x) = {‘Aé”‘ xz0 .
O foO |*/L reche

/ b‘a’ 9&!‘4’5
AKX

|
EV 83(;}\9_ 0[1:“,: ‘;

Definition 2.2 Let g(X) be a function of a continuous random variable X with pdf fy.
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Example 2.3 Let X be the number of cylinders in a car engine. The following is the pmf

function for the size of car engines.
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Covariance measures how two random variables vary together (their relationship).
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Definition 2.4 The covariance of X and Y is defined by

Cov[X,Y] = E[(X — E[X])(Y — E[Y])]
= E[XY] - E[X]E[Y]
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3 Independence and Conditional Probability

In classical probability, the conditional probability of an event A given that event B has
occured is

P(ANB)

P(4IB) = —5

Definition 3.1 Two events A and B are independent if P(A|B) = P(A). The converse is
also true, so

A and B are independent < P(A|B) = P(A) & P(ANB) =

Theorem 3.1 (Bayes’ Theorem) Let A and B be events. Then,

P(A|B) = % —

3.1 Random variables

The same ideas hold for random variables. If X and Y have joint pdf fxy(z,y), then the

conditional density of X given Y =y is

. fX,Y(xay)
fX|Y=y($) = fy—(y)

Thus, two random variables X and Y are independent if and only if

fxy(z,y) = fx(2)fr(y).

Also, if X and Y are independent, then

fX\Yzy(x) =
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4 Properties of Expected Value and Variance

Suppose that X and Y are random variables, and a and b are constants. Then the follow-

ing hold:

1. ElaX + b =

2. E[X+Y]=

3. If X and Y are independent, then E[XY] =

4. Var[b] =

5. VarlaX + b| =

6. If X and Y are independent, Var[X + Y] =
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5 Random Samples

Definition 5.1 Random variables {Xi, ..., X, } are defined as a random sample from fx if

X1, Xn < fx.

Example 5.1

Theorem 5.1 If X7, ...,

Example 5.2 Let X, ...,
mean X, = ~ 3 X.
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6 R Tips
From here on in the course we will be dealing with a lot of randomness. In other words,
running our code will return a random result.

But what about reproducibility??

When we generate “random” numbers in R, we are actually generating numbers that look
random, but are pseudo-random (not really random). The vast majority of computer lan-
guages operate this way.

This means all is not lost for reproducibility!
set.seed(400)

Before running our code, we can fix the starting point (seed) of the pseudorandom num-
ber generator so that we can reproduce results.

Speaking of generating numbers, we can generate numbers (also evaluate densities, distri-
bution functions, and quantile functions) from named distributions in R.

rnorm(100)
dnorm(x)
pnorm(x)
gnorm(y)
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