Chapter 2: Probability for Statistical Computing

We will **briefly** review some definitions and concepts in probability and statistics that will be helpful for the remainder of the class.

Just like we reviewed computational tools (R and packages), we will now do the same for probability and statistics.

Note: This is not meant to be comprehensive. I am assuming you already know this and maybe have forgotten a few things.

https://xkcd.com/892/

Alternative text: "Hell, my eighth grade science class managed to conclusively reject it just based on a classroom experiment. It's pretty sad to hear about million-dollar research teams who can't even manage that."

1 Random Variables and Probability

Definition 1.1 A random variable is a function that maps sets of all possible outcomes of an experiment (sample space Ω) to \mathbb{R} .

 $(-\infty, \infty)$ Example 1.1 apperiment 1055 2 dice $-n = \{(i_{1,j}) : i = 1, ..., 6; j = 1, ..., 6\}$ r.v. X = som of the dice. Example 1.2 experiment: Randomly select 25 deer & test for CWD r.V. X: {0 or 1] Observe X17-1, X25 D= 3+ - CUD3 r.v. P = 25 X; /25 is also a r.v. Example 1.3 experiment; Deck of cords, draw one card n, v, X : lif clubs, 0 otherwise. $\Omega = \{ values of all 52 cords in a deck \}$ = $\{ AC, 2C, 3C, ..., KC, \}$ - Xi AS, 25, ..., KS Types of random variables -AD, 2D, ___, KD, **Discrete** take values in a countable set. A4, 2H, ___, KH } Ex. 1.1 Xi from Exliz, X from X1.3 **Continuous** take values in an uncountable set (like \mathbb{R}) Ex 1.4 XIER pfrom Exliz PE[0,1]

by

1.1 Distribution and Density Functions

Definition 1.2 The probability mass function (pmf) of a random variable X is f_X defined by f_X by the first same times when the r.v. is obvious I will pair

$$f_{X}(x) = P(X = x) \qquad for any X \in \mathbb{R} \qquad \text{and write}$$

where $P(\cdot)$ denotes the probability of its argument.

There are a few requirements of a **valid** pmf

1. f(2c) 20 for all 26 R. 2. $\sum_{x} f(x) = |$ Not a 3. We call $\mathcal{X} = \{x: f(x) > 0\}$ the "support" of X. requirement

Example 1.4 Let Ω = all possible values of a roll of a single die = {1, ..., 6} and X be the outcome of a single roll of one die $\in \{1, \ldots, 6\}$.

 $\sum_{x \in X} f(x) = \sum_{y=1}^{6} \frac{1}{6} = 1 \quad \forall \text{ valid } pmf.$ $f(1) = P(X=1) = \frac{1}{6}$ $f(6) = \frac{1}{6}$

Fair die

A pmf is defined for discrete variables, but what about continuous? Continuous variables do not have positive probability pass at any single point.

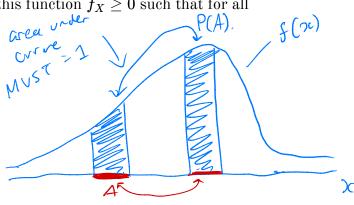
Definition 1.3 The probability density function (pdf) of a random variable X is f_X defined by ACR

$$P(X\in A)=\int\limits_{x\in A}f_X(x)dx.$$

X is a continuous random variable if there exists this function $f_X \ge 0$ such that for all P(A). $x \in \mathbb{R}$, this probability exists.

For f_X to be a valid pdf,

- 1. $f(x) \ge 0$ $\forall x \in \mathbb{R}$
- 2. $\int f(x) dx = 1$



Again
$$\mathcal{X} = \{ \chi : f(\chi) > 0 \}$$
 is the "support" of χ

 $f(\chi)$.

pmfs

There are many named pdfs and addig that you have seen in other class, e.g.

$$\begin{array}{c} gert\\ gert\\ gertoulli', \ \rhooisson, \ Gamma, \ Normal, \ beta, exponential, \ hy pergeometrie.\\ \end{array}$$
Example 1.5 Let

$$f(x) = \begin{cases} c(4x - 2x^2) & 0 < x < 2 \\ 0 & 0 & 0 \end{cases}$$
Find c and then find $P(X > 1)$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 < x < 2 \\ 0 & 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 < x < 2 \\ 0 & 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 < x < 2 \\ 0 & 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 < x < 2 \\ 0 & 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 < x < 2 \\ 0 & 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 & 0 \\ 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 & 0 \\ 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 & 0 \\ 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2x^2) & 0 \\ 0 & 0 \\ \end{array}\right\}$$

$$\begin{array}{c} f(x) = \left\{ c(4x - 2$$

 $X \rightarrow -\infty$ A random variable X is *continuous* if F_X is a continuous function and *discrete* if F_X is a function

Example 1.6 Find the cdf for the previous example.

$$F_{\lambda}(x) = P(\chi \leq x)$$
for $\chi \in (b_{1}2)$, $P(\chi \leq x) = \int_{0}^{x} \frac{3}{8} (4y - 3y^{2}) dy = \left[\frac{3}{8} (2y^{2} - \frac{2y^{3}}{3})\right]_{0}^{x}$

$$\int_{0}^{x} \int_{0}^{y} \chi^{2}(1-\frac{x}{3}) \frac{\chi \leq 0}{x \in (0, 2)} = \frac{3}{4} \chi^{2} \left(1 - \frac{x}{3}\right)$$
Note $f(x) = F'(x) = \frac{dF(x)}{dx}$ in the continuous case.
 $p df$ derivative
 gf Cdf
 dy to the Fundamental Thin of
Calculus.

NOT rt-uts

Recall an indicator function is defined as

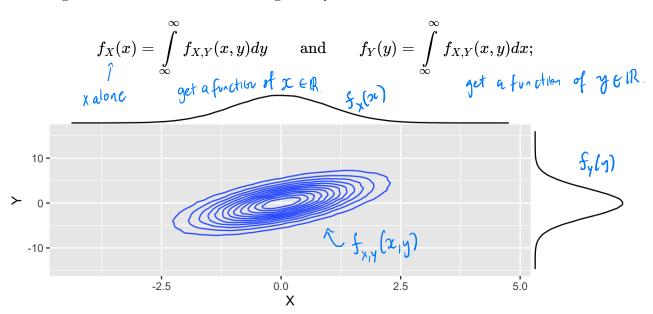
$$I_{(A)} = \begin{cases} 1 & \text{if } A \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$
Example 1.7 $y_{0} = \chi^{2}$

$$\int_{(z,y)}^{z} (z,y) = \int_{(z,y)}^{z} (z,y) = \chi^{2}$$

$$I = \int_{(z,y)}^{z} (z,y) = \int_{(z,y)$$

1 RVs and Probability

Example 1.9



The marginal densities of X and Y are given by

Example 1.10 (From Devore (2008) Example 5.3, pg. 187) A bank operates both a driveup facility and a walk-up window. On a randomly selected day, let X be the proportion of time that the drive-up facility is in use and Y is the proportion of time that the walk-up window is in use.

rondom vector

The the set of possible values for (X, Y) is the square $D = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}$. Suppose the joint pdf is given by

$$f_{X,Y}(x,y) = egin{cases} rac{6}{5}(x+y^2) & x\in[0,1], y\in[0,1] \ 0 & ext{otherwise} \end{cases} egin{array}{c} \chi(\chi_1y) & heta \leq \chi \leq 1, \ 0 \leq \chi \leq 1, \ 0$$

Evaluate the probability that both the drive-up and the walk-up windows are used a quarter of the time or less. V_{0}

$$P(o \le x \le \frac{1}{4}, 0 \le 7 \le \frac{1}{4}) = \int_{0}^{1} \int_{0}^{1} \frac{6}{5} (x + y^{2}) dx dy$$

$$= \int_{0}^{1/4} \frac{6}{5} \left[\frac{x^{2}}{2} + x y^{2} \right]_{0}^{1/4} dy$$

$$= \int_{0}^{1/4} \frac{6}{5} \left(\frac{1}{32} + \frac{y^{2}}{4} \right) dy$$

$$= \left[\frac{6}{5} \left(\frac{7}{32} + \frac{y^{3}}{12} \right) \right]_{0}^{1/4} = \frac{6}{5} \left(\frac{1}{32} \cdot \frac{1}{4} + \frac{1}{12} \left(\frac{1}{4} \right)^{3} \right) = \frac{7}{640}$$

$$= \left[\frac{6}{5} \left(\frac{7}{32} + \frac{y^{3}}{12} \right) \right]_{0}^{1/4} = \frac{6}{5} \left(\frac{1}{32} \cdot \frac{1}{4} + \frac{1}{12} \left(\frac{1}{4} \right)^{3} \right) = \frac{7}{640}$$

Find the marginal densities for X and Y.

$$f_{x}(x) = \int_{0}^{1} \frac{6}{5} (x + y^{2}) dy = \frac{6}{5} [xy + \frac{y^{3}}{3}]_{y=0}^{1} = \begin{cases} \frac{6}{5} (x + \frac{1}{3}) & \text{for } x \in [o_{1}] \\ 0 & \dots \end{cases}$$

$$f_{y}(y)$$

$$f_{y}(y)$$

$$f_{zerve up to you}$$

Compute the probability that the drive-up facility is used a quarter of the time or less.

$$P(X \leq \frac{1}{4}) = \int_{0}^{y_{4}} f_{x}(x) dx = \int_{0}^{y_{4}} \frac{6}{5} (x + \frac{1}{3}) dx$$

$$= \frac{6}{5} \left[\frac{x^{2}}{2} + \frac{x}{3} \right]_{0}^{y_{4}}$$

$$= \frac{11}{80} = 0,1375$$

2 Expected Value and Variance

Definition 2.1 The *expected value* (average or mean) of a random variable X with pdf or pmf f_X is defined as

$$E[X] = egin{cases} \sum\limits_{x \in \mathcal{X}} x f_X(x_i) & X ext{ is discrete} \ \int\limits_{x \in \mathcal{X}} x f_X(x) dx & X ext{ is continuous.} \end{cases}$$

Where $\mathcal{X} = \{x : f_X(x) > 0\}$ is the support of X.

This is a weighted average of all possible values \mathcal{X} by the probability distribution. **Example 2.1** Let $X \sim \text{Bernoulli}(p)$. Find E[X]. $\chi = \begin{cases} 1 & u, \rho, \rho \\ 0 & u, \eta \end{cases} \Rightarrow f(x) = \begin{cases} \rho & u \text{ when } x = 1 \\ 1 - \rho & u \text{ when } x = 0 \end{cases}$ or $f(x) = \rho^{x} (1 - \rho)^{1-x}$ for $x \in \{p, 1\}$ $F(x) = \sum \chi f(x) = 0 (1 - \rho) + 1 (\rho) = \rho$. $F(x) = \sum \chi f(x) = 0 (1 - \rho) + 1 (\rho) = \rho$. **Example 2.2** Let $X \sim \text{Exp}(\lambda)$. Find E[X]. $f(x) = \begin{cases} \lambda e^{\lambda x} & \chi z 0 \\ 0 & \chi \leq 0 \end{cases}$ integration by parts. $F(x) = \int_{0}^{\infty} \chi \lambda e^{\lambda x} dx = \dots = \frac{1}{\lambda}$

Definition 2.2 Let g(X) be a function of a continuous random variable X with pdf f_X . Then,

Definition 2.3 The variance (a

$$E[g(X)] = \int_{x \in \mathcal{X}} g(x) f_X(x) dx.$$
measure of spread) is defined as
$$\int_{x \in \mathcal{X}} g(x) f_X(x) dx.$$

$$Var[X] = E \left[(X - E[X])^2 \right]$$

= $E[X^2] - (E[X])^2$ formula
 $\int_{g(x)=\chi^2}^{\gamma}$

Example 2.3 Let X be the number of cylinders in a car engine. The following is the pmf function for the size of car engines. x 4.0 6.0 8.0 i.e. P(X=y) = 0,5, etc.

Find

$$E[X] = \sum_{x+x} x f(x) = 4 \cdot 0.5 + 6 \cdot 0.2 + 8 \cdot 0.2 = 5.9$$

$$Var[X] = E[X^2] - (EX)^2$$

$$E(X^2) = \sum_{x+x} x^2 f(x) = 4^2(0.5) + 6^2(0.3) + 8^2(0.2) = 3/.6$$

$$Var[X] = X^2 f(x) = 2.44$$

$$Covariance measures how two random variables vary together (their linear) relationship).$$

$$Var[X] = Cov(X,Y) = 0$$

$$Var[X] = E[(X - E[X])(Y - E[Y])]$$

$$Var[X] = E[(X - E[Y])(Y - E[Y])]$$

$$Cov[X,Y] = E[(X - E[X])(Y - E[Y])]$$

= $E[XY] - E[X]E[Y]$
and Y is defined as

and the *correlation* of X and Y is defined as

Y

$$\rho(X,Y) = \frac{Cov[X,Y]}{\sqrt{Var[X]Var[Y]}} \sim \rho \notin [-]_{I}$$

Two variables X and Y are uncorrelated if $\rho(X, Y) = 0$.

COV(x,y) = 0

3 Independence and Conditional Probability

In classical probability, the *conditional probability* of an event A given that event B has occured is

$$P(A|B) = rac{P(A \cap B)}{P(B)}.$$

Definition 3.1 Two events A and B are *independent* if P(A|B) = P(A). The converse is also true, so

 $A ext{ and } B ext{ are independent} \Leftrightarrow P(A|B) = P(A) \Leftrightarrow P(A \cap B) =$

Theorem 3.1 (Bayes' Theorem) Let A and B be events. Then,

$$P(A|B) = rac{P(A \cap B)}{P(B)} =$$

3.1 Random variables

The same ideas hold for random variables. If X and Y have joint pdf $f_{X,Y}(x, y)$, then the conditional density of X given Y = y is

$$f_{X|Y=y}(x)=rac{f_{X,Y}(x,y)}{f_Y(y)}$$

Thus, two random variables X and Y are independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Also, if X and Y are independent, then

$$f_{X\mid Y=y}(x) =$$

4 Properties of Expected Value and Variance

Suppose that X and Y are random variables, and a and b are constants. Then the following hold:

1. E[aX + b] =

2. E[X + Y] =

3. If X and Y are independent, then E[XY] =

4. Var[b] =

- 5. Var[aX + b] =
- 6. If X and Y are independent, Var[X + Y] =

5 Random Samples

Definition 5.1 Random variables $\{X_1, \ldots, X_n\}$ are defined as a *random sample* from f_X if $X_1, \ldots, X_n \stackrel{iid}{\sim} f_X$.

Example 5.1

Theorem 5.1 If $X_1, \ldots, X_n \overset{iid}{\sim} f_X$, then

$$f(x_1,\ldots,x_n) = \prod_{i=1}^n f_X(x_i).$$

Example 5.2 Let X_1, \ldots, X_n be iid. Derive the expected value and variance of the sample mean $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

6 R Tips

From here on in the course we will be dealing with a lot of **randomness**. In other words, running our code will return a **random** result.

But what about reproducibility??

When we generate "random" numbers in R, we are actually generating numbers that *look* random, but are *pseudo-random* (not really random). The vast majority of computer languages operate this way.

This means all is not lost for reproducibility!

```
set.seed(400)
```

Before running our code, we can fix the starting point (seed) of the pseudorandom number generator so that we can reproduce results.

Speaking of generating numbers, we can generate numbers (also evaluate densities, distribution functions, and quantile functions) from named distributions in **R**.

rnorm(100)
dnorm(x)
pnorm(x)
qnorm(y)